Cranberries (Vaccinium macrocarpon) represent an important source of anthocyanins, flavan-3-ols and flavonols. This study aimed at investigating in vitro the human microbial metabolism of (poly)phenols, principally flavan-3-ols, of unformulated- and phytosome-formulated cranberry extracts. After powder characterization, a 24-h fermentation with human faecal slurries was performed, standardizing the concentration of incubated proanthocyanidins. Cranberry (poly)phenol metabolites were quantified by uHPLC-MS2 analyses. The native compounds of both unformulated- and phytosome-formulated cranberry extracts were metabolized under faecal microbiota activity, resulting in twenty-four microbial metabolites. Although some differences appeared when considering different classes of colonic metabolites, no significant differences in the total amount of metabolites were established after 24 h of incubation period. These results suggested that a different formulation had no effect on flavan-3-ol colonic metabolism of cranberry and both unformulated- and phytosome-formulated extract. Both formulations displayed the capability to be a potential source of compounds which could lead to a wide array of gut microbiota metabolites in vitro.

In vitro (poly)phenol catabolism of unformulated- and phytosome-formulated cranberry (Vaccinium macrocarpon) extracts / Bresciani, L.; Di Pede, G.; Favari, C.; Calani, L.; Francinelli, V.; Riva, A.; Petrangolini, G.; Allegrini, P.; Mena, P.; Del Rio, D.. - In: FOOD RESEARCH INTERNATIONAL. - ISSN 0963-9969. - 141:(2021), p. 110137. [10.1016/j.foodres.2021.110137]

In vitro (poly)phenol catabolism of unformulated- and phytosome-formulated cranberry (Vaccinium macrocarpon) extracts

Bresciani L.;Di Pede G.;Favari C.;Calani L.;Francinelli V.;Mena P.
;
Del Rio D.
2021-01-01

Abstract

Cranberries (Vaccinium macrocarpon) represent an important source of anthocyanins, flavan-3-ols and flavonols. This study aimed at investigating in vitro the human microbial metabolism of (poly)phenols, principally flavan-3-ols, of unformulated- and phytosome-formulated cranberry extracts. After powder characterization, a 24-h fermentation with human faecal slurries was performed, standardizing the concentration of incubated proanthocyanidins. Cranberry (poly)phenol metabolites were quantified by uHPLC-MS2 analyses. The native compounds of both unformulated- and phytosome-formulated cranberry extracts were metabolized under faecal microbiota activity, resulting in twenty-four microbial metabolites. Although some differences appeared when considering different classes of colonic metabolites, no significant differences in the total amount of metabolites were established after 24 h of incubation period. These results suggested that a different formulation had no effect on flavan-3-ol colonic metabolism of cranberry and both unformulated- and phytosome-formulated extract. Both formulations displayed the capability to be a potential source of compounds which could lead to a wide array of gut microbiota metabolites in vitro.
2021
In vitro (poly)phenol catabolism of unformulated- and phytosome-formulated cranberry (Vaccinium macrocarpon) extracts / Bresciani, L.; Di Pede, G.; Favari, C.; Calani, L.; Francinelli, V.; Riva, A.; Petrangolini, G.; Allegrini, P.; Mena, P.; Del Rio, D.. - In: FOOD RESEARCH INTERNATIONAL. - ISSN 0963-9969. - 141:(2021), p. 110137. [10.1016/j.foodres.2021.110137]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2888113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact