Solving complex robot manipulation tasks requires a Task and Motion Planner (TAMP) that searches for a sequence of symbolic actions, i.e. a task plan, and also computes collision-free motion paths. As the task planner and the motion planner are closely interconnected TAMP is considered a challenging problem. In this paper, a Probabilistic Integrated Task and Motion Planner (PROTAMP-RRT) is presented. The proposed method is based on a unified Rapidly-exploring Random Tree (RRT) that operates on both the geometric space and the symbolic space. The RRT is guided by the task plan and it is enhanced with a probabilistic model that estimates the probability of sampling a new robot configuration towards the next sub-goal of the task plan. When the RRT is extended, the probabilistic model is updated alongside. The probabilistic model is used to generate a new task plan if the feasibility of the previous one is unlikely. The performance of PROTAMP-RRT was assessed in simulated pick-and-place tasks, and it was compared against state-of-the-art approaches TM-RRT and Planet, showing better performance.
PROTAMP-RRT: A Probabilistic Integrated Task and Motion Planner based on RRT / Saccuti, A.; Monica, R.; Aleotti, J.. - In: IEEE ROBOTICS AND AUTOMATION LETTERS. - ISSN 2377-3766. - 8:12(2023), pp. 8398-8405. [10.1109/LRA.2023.3327657]
PROTAMP-RRT: A Probabilistic Integrated Task and Motion Planner based on RRT
Saccuti A.;Monica R.;Aleotti J.
2023-01-01
Abstract
Solving complex robot manipulation tasks requires a Task and Motion Planner (TAMP) that searches for a sequence of symbolic actions, i.e. a task plan, and also computes collision-free motion paths. As the task planner and the motion planner are closely interconnected TAMP is considered a challenging problem. In this paper, a Probabilistic Integrated Task and Motion Planner (PROTAMP-RRT) is presented. The proposed method is based on a unified Rapidly-exploring Random Tree (RRT) that operates on both the geometric space and the symbolic space. The RRT is guided by the task plan and it is enhanced with a probabilistic model that estimates the probability of sampling a new robot configuration towards the next sub-goal of the task plan. When the RRT is extended, the probabilistic model is updated alongside. The probabilistic model is used to generate a new task plan if the feasibility of the previous one is unlikely. The performance of PROTAMP-RRT was assessed in simulated pick-and-place tasks, and it was compared against state-of-the-art approaches TM-RRT and Planet, showing better performance.File | Dimensione | Formato | |
---|---|---|---|
AMP.pdf
accesso aperto
Tipologia:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
5.22 MB
Formato
Adobe PDF
|
5.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.