The aim of this work was to investigate in which phases of ripening of Parmigiano Reggiano cheese lactic acid bacteria aminopeptidases present in cheese extract could be involved in release of free amino acids and to better understand the behavior of these enzymes in physical-chemical conditions that are far from their optimum. In particular, we evaluated 6 different substrates to reproduce broad-specificity aminopeptidase N, broad-specificity aminopeptidase C, glutamyl aminopeptidase A, peptidase with high specificity for leucine and alanine, proline iminopeptidase, and X-prolyl dipeptidyl aminopeptidase activities releasing different N-terminal amino acids. The effects of pH, NaCl concentration, and temperature on the enzyme activities of amino acid β-naphthylamide (βNA)-substrates were determined by modulating the variables in 19 different runs of an experimental design, which allowed the building of mathematical models able to assess the effect on aminopeptidases activities over a range of values, obtained with bibliographic data, covering different environmental conditions in different zones of the cheese wheel at different aging times. The aminopeptidases tested in this work were present in cell-free Parmigiano Reggiano cheese extract after a 17-mo ripening and were active when tested in model system. The modeling approach shows that to highlight the individual and interactive effects of chemical-physical variables on enzyme activities, it is helpful to determine the true potential of an aminopeptidase in cheese. Our results evidenced that the 6 different lactic acid bacteria peptidases participate in cheese proteolysis and are induced or inhibited by the cheese production parameters that, in turn, depend on the cheese dimension. Generally, temperature and pH exerted the more relevant effects on the enzymatic activities, and in many cases, a relevant interactive effect of these variables was observed. Increasing salt concentration slowed down broad-specificity aminopeptidase C, glutamyl aminopeptidase A, proline iminopeptidase, and peptidase with high specificity for leucine and alanine. Interestingly, this variable did not affect broad-specificity aminopeptidase N and positively affected X-prolyl dipeptidyl aminopeptidase. The models elaborated varying pH, temperatures, and salt concentration and were a useful, low cost, and fast tool to understand the role of the main peptidases in the different phases of cheese ripening in relation to the major environmental factors influencing enzyme activity.
A Model to Assess LAB Aminopeptidase Activities in Parmigiano Reggiano Cheese During Ripening / Gatti, Monica; J., DEA LINDNER; F., Gardini; Mucchetti, Germano; Bevacqua, D; Fornasari, M. E.; Neviani, Erasmo. - In: JOURNAL OF DAIRY SCIENCE. - ISSN 0022-0302. - 91:(2008), pp. 4129-4137. [10.3168/JDS.2008-1069]
A Model to Assess LAB Aminopeptidase Activities in Parmigiano Reggiano Cheese During Ripening
GATTI, Monica;MUCCHETTI, Germano;NEVIANI, Erasmo
2008-01-01
Abstract
The aim of this work was to investigate in which phases of ripening of Parmigiano Reggiano cheese lactic acid bacteria aminopeptidases present in cheese extract could be involved in release of free amino acids and to better understand the behavior of these enzymes in physical-chemical conditions that are far from their optimum. In particular, we evaluated 6 different substrates to reproduce broad-specificity aminopeptidase N, broad-specificity aminopeptidase C, glutamyl aminopeptidase A, peptidase with high specificity for leucine and alanine, proline iminopeptidase, and X-prolyl dipeptidyl aminopeptidase activities releasing different N-terminal amino acids. The effects of pH, NaCl concentration, and temperature on the enzyme activities of amino acid β-naphthylamide (βNA)-substrates were determined by modulating the variables in 19 different runs of an experimental design, which allowed the building of mathematical models able to assess the effect on aminopeptidases activities over a range of values, obtained with bibliographic data, covering different environmental conditions in different zones of the cheese wheel at different aging times. The aminopeptidases tested in this work were present in cell-free Parmigiano Reggiano cheese extract after a 17-mo ripening and were active when tested in model system. The modeling approach shows that to highlight the individual and interactive effects of chemical-physical variables on enzyme activities, it is helpful to determine the true potential of an aminopeptidase in cheese. Our results evidenced that the 6 different lactic acid bacteria peptidases participate in cheese proteolysis and are induced or inhibited by the cheese production parameters that, in turn, depend on the cheese dimension. Generally, temperature and pH exerted the more relevant effects on the enzymatic activities, and in many cases, a relevant interactive effect of these variables was observed. Increasing salt concentration slowed down broad-specificity aminopeptidase C, glutamyl aminopeptidase A, proline iminopeptidase, and peptidase with high specificity for leucine and alanine. Interestingly, this variable did not affect broad-specificity aminopeptidase N and positively affected X-prolyl dipeptidyl aminopeptidase. The models elaborated varying pH, temperatures, and salt concentration and were a useful, low cost, and fast tool to understand the role of the main peptidases in the different phases of cheese ripening in relation to the major environmental factors influencing enzyme activity.File | Dimensione | Formato | |
---|---|---|---|
Gatti De Dea Lindner et al 2008.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
727.3 kB
Formato
Adobe PDF
|
727.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.