Background: Monoclonal antibodies (ICI) targeting the immune checkpoint PD-1/PD-L1 alone or in combination with chemotherapy have demonstrated relevant benefits and established new standards of care in first-line treatment for advanced non-oncogene addicted non-small cell lung cancer (NSCLC). However, a relevant percentage of NSCLC patients, even with high PD-L1 expression, did not respond to ICI, highlighting the presence of intracellular resistance mechanisms that could be dependent on high PD-L1 levels. The intracellular signaling induced by PD-L1 in tumor cells and their correlation with angiogenic signaling pathways are not yet fully elucidated. Methods: The intrinsic role of PD-L1 was initially checked in two PD-L1 overexpressing NSCLC cells by transcriptome profile and kinase array. The correlation of PD-L1 with VEGF, PECAM-1, and angiogenesis was evaluated in a cohort of advanced NSCLC patients. The secreted cytokines involved in tumor angiogenesis were assessed by Luminex assay and their effect on Huvec migration by a non-contact co-culture system. Results: PD-L1 overexpressing cells modulated pathways involved in tumor inflammation and JAK-STAT signaling. In NSCLC patients, PD-L1 expression was correlated with high tumor intra-vasculature. When challenged with PBMC, PD-L1 overexpressing cells produced higher levels of pro-angiogenic factors compared to parental cells, as a consequence of STAT signaling activation. This increased production of cytokines involved in tumor angiogenesis largely stimulated Huvec migration. Finally, the addition of the anti-antiangiogenic agent nintedanib significantly reduced the spread of Huvec cells when exposed to high levels of pro-angiogenic factors. Conclusions: In this study, we reported that high PD-L1 modulates STAT signaling in the presence of PBMC and induces pro-angiogenic factor secretion. This could enforce the role of PD-L1 as a crucial regulator of the tumor microenvironment stimulating tumor progression, both as an inhibitor of T-cell activity and as a promoter of tumor angiogenesis.

PD-L1 overexpression induces STAT signaling and promotes the secretion of pro-angiogenic cytokines in non-small cell lung cancer (NSCLC) / Cavazzoni, A.; Digiacomo, G.; Volta, F.; Alfieri, R.; Giovannetti, E.; Gnetti, L.; Bellini, L.; Galetti, M.; Fumarola, C.; Xu, G.; Bonelli, M.; La Monica, S.; Verze, M.; Leonetti, A.; Eltayeb, K.; D'Agnelli, S.; Moron Dalla Tor, L.; Minari, R.; Petronini, P. G.; Tiseo, M.. - In: LUNG CANCER. - ISSN 0169-5002. - 187:(2024), p. 107438. [10.1016/j.lungcan.2023.107438]

PD-L1 overexpression induces STAT signaling and promotes the secretion of pro-angiogenic cytokines in non-small cell lung cancer (NSCLC)

Cavazzoni A.
;
Digiacomo G.;Volta F.;Alfieri R.;Gnetti L.;Bellini L.;Galetti M.;Fumarola C.;Bonelli M.;La Monica S.;Leonetti A.;D'Agnelli S.;Moron Dalla Tor L.;Petronini P. G.;Tiseo M.
2024-01-01

Abstract

Background: Monoclonal antibodies (ICI) targeting the immune checkpoint PD-1/PD-L1 alone or in combination with chemotherapy have demonstrated relevant benefits and established new standards of care in first-line treatment for advanced non-oncogene addicted non-small cell lung cancer (NSCLC). However, a relevant percentage of NSCLC patients, even with high PD-L1 expression, did not respond to ICI, highlighting the presence of intracellular resistance mechanisms that could be dependent on high PD-L1 levels. The intracellular signaling induced by PD-L1 in tumor cells and their correlation with angiogenic signaling pathways are not yet fully elucidated. Methods: The intrinsic role of PD-L1 was initially checked in two PD-L1 overexpressing NSCLC cells by transcriptome profile and kinase array. The correlation of PD-L1 with VEGF, PECAM-1, and angiogenesis was evaluated in a cohort of advanced NSCLC patients. The secreted cytokines involved in tumor angiogenesis were assessed by Luminex assay and their effect on Huvec migration by a non-contact co-culture system. Results: PD-L1 overexpressing cells modulated pathways involved in tumor inflammation and JAK-STAT signaling. In NSCLC patients, PD-L1 expression was correlated with high tumor intra-vasculature. When challenged with PBMC, PD-L1 overexpressing cells produced higher levels of pro-angiogenic factors compared to parental cells, as a consequence of STAT signaling activation. This increased production of cytokines involved in tumor angiogenesis largely stimulated Huvec migration. Finally, the addition of the anti-antiangiogenic agent nintedanib significantly reduced the spread of Huvec cells when exposed to high levels of pro-angiogenic factors. Conclusions: In this study, we reported that high PD-L1 modulates STAT signaling in the presence of PBMC and induces pro-angiogenic factor secretion. This could enforce the role of PD-L1 as a crucial regulator of the tumor microenvironment stimulating tumor progression, both as an inhibitor of T-cell activity and as a promoter of tumor angiogenesis.
2024
PD-L1 overexpression induces STAT signaling and promotes the secretion of pro-angiogenic cytokines in non-small cell lung cancer (NSCLC) / Cavazzoni, A.; Digiacomo, G.; Volta, F.; Alfieri, R.; Giovannetti, E.; Gnetti, L.; Bellini, L.; Galetti, M.; Fumarola, C.; Xu, G.; Bonelli, M.; La Monica, S.; Verze, M.; Leonetti, A.; Eltayeb, K.; D'Agnelli, S.; Moron Dalla Tor, L.; Minari, R.; Petronini, P. G.; Tiseo, M.. - In: LUNG CANCER. - ISSN 0169-5002. - 187:(2024), p. 107438. [10.1016/j.lungcan.2023.107438]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2968712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact