Antimicrobial resistance (AMR) is a risk for public health that requires management in a One Health perspective, including humans, animals, and the environment. The food production chain has been identified as a possible route of transmission of AMR bacteria to humans. The most critical issue regards resistance to the Critically Important Antimicrobials (CIAs), such as β-lactams antibiotics. Here, pigs were analysed along the entire food producing chain, including feces, carcasses and pork products (fresh meat, fermented and seasoned products) ensuring treaciability of all samples. Escherichia coli were isolated and their ability to produce ESBL and AmpC β-lactamases was evaluated both phenotypically and genotypically. Strains with the same AMR profile from feces, carcasses, and meat products were selected for phylogenetic and comparative genomic analyses to evaluate the possible “farm-to-fork” transmission of β-lactams resistant bacteria. Results showed that the percentage of ESBL strains in fecal E. coli was approximately 7% and increased slightly in the pork food chain: the 10% of ESBL E. coli isolated from carcasses and the 12.5% of isolates from fresh meat products. AmpC E. coli were found only in feces, carcasses, and fresh meat with a low prevalence. Results showed that of the 243 pigs followed along the entire food chain genetic similarities in E. coli isolated from farm-to-fork were found in only one pig (feces, carcasses and fresh meat). Frequent similarities were shown in resistant E. coli isolates from carcasses and fresh meat or fermented product (three pork food chain). Moreover, in one case, bacteria isolated from fresh meat and fermented product were genotypically similar. Concluding, direct transmission of β-lactams resistance from farm-to-fork is possible but not frequent. Further studies are needed to improve risk communication to consumers and access to clear and reliable information and health concerns on food.

Transmission of β-lactamases in the pork food chain: A public health concern / Rega, Martina; Andriani, Laura; Poeta, Antonio; Casadio, Chiara; Diegoli, Giuseppe; Bonardi, Silvia; Conter, Mauro; Bacci, Cristina. - In: ONE HEALTH. - ISSN 2352-7714. - (2023). [10.1016/j.onehlt.2023.100632]

Transmission of β-lactamases in the pork food chain: A public health concern

Martina Rega
;
Laura Andriani;Silvia Bonardi;Mauro Conter;Cristina Bacci
2023-01-01

Abstract

Antimicrobial resistance (AMR) is a risk for public health that requires management in a One Health perspective, including humans, animals, and the environment. The food production chain has been identified as a possible route of transmission of AMR bacteria to humans. The most critical issue regards resistance to the Critically Important Antimicrobials (CIAs), such as β-lactams antibiotics. Here, pigs were analysed along the entire food producing chain, including feces, carcasses and pork products (fresh meat, fermented and seasoned products) ensuring treaciability of all samples. Escherichia coli were isolated and their ability to produce ESBL and AmpC β-lactamases was evaluated both phenotypically and genotypically. Strains with the same AMR profile from feces, carcasses, and meat products were selected for phylogenetic and comparative genomic analyses to evaluate the possible “farm-to-fork” transmission of β-lactams resistant bacteria. Results showed that the percentage of ESBL strains in fecal E. coli was approximately 7% and increased slightly in the pork food chain: the 10% of ESBL E. coli isolated from carcasses and the 12.5% of isolates from fresh meat products. AmpC E. coli were found only in feces, carcasses, and fresh meat with a low prevalence. Results showed that of the 243 pigs followed along the entire food chain genetic similarities in E. coli isolated from farm-to-fork were found in only one pig (feces, carcasses and fresh meat). Frequent similarities were shown in resistant E. coli isolates from carcasses and fresh meat or fermented product (three pork food chain). Moreover, in one case, bacteria isolated from fresh meat and fermented product were genotypically similar. Concluding, direct transmission of β-lactams resistance from farm-to-fork is possible but not frequent. Further studies are needed to improve risk communication to consumers and access to clear and reliable information and health concerns on food.
2023
Transmission of β-lactamases in the pork food chain: A public health concern / Rega, Martina; Andriani, Laura; Poeta, Antonio; Casadio, Chiara; Diegoli, Giuseppe; Bonardi, Silvia; Conter, Mauro; Bacci, Cristina. - In: ONE HEALTH. - ISSN 2352-7714. - (2023). [10.1016/j.onehlt.2023.100632]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2960252
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact