Steady-state enzyme kinetics typically relies on the measurement of ‘initial rates’, obtained when the substrate is not significantly consumed and the amount of product formed is negligible. Although initial rates are usually faster than those measured later in the reaction time-course, sometimes the speed of the reaction appears instead to increase with time, reaching a steady level only after an initial delay or ‘lag phase’. This behavior needs to be interpreted by the experimentalists. To assist interpretation, this article analyzes the many reasons why, during an enzyme assay, the observed rate can be slow in the beginning and then progressively accelerate. The possible causes range from trivial artifacts to instances in which deeper mechanistic or biophysical factors are at play. We provide practical examples for most of these causes, based firstly on experiments conducted with ornithine δ-aminotransferase and with other pyridoxal-phosphate dependent enzymes that have been studied in our laboratory. On the side to this survey, we provide evidence that the product of the ornithine δ-aminotransferase reaction, glutamate 5-semialdehyde, cyclizes spontaneously to pyrroline 5-carboxylate with a rate constant greater than 3 s−1.

Off to a slow start: Analyzing lag phases and accelerating rates in steady-state enzyme kinetics / Zangelmi, E.; Ronda, L.; Castagna, C.; Campanini, B.; Veiga-da-Cunha, M.; Van Schaftingen, E.; Peracchi, A.. - In: ANALYTICAL BIOCHEMISTRY. - ISSN 0003-2697. - 593:(2020), pp. 113595.1-113595.11. [10.1016/j.ab.2020.113595]

Off to a slow start: Analyzing lag phases and accelerating rates in steady-state enzyme kinetics

Zangelmi E.;Ronda L.;Campanini B.;Peracchi A.
2020-01-01

Abstract

Steady-state enzyme kinetics typically relies on the measurement of ‘initial rates’, obtained when the substrate is not significantly consumed and the amount of product formed is negligible. Although initial rates are usually faster than those measured later in the reaction time-course, sometimes the speed of the reaction appears instead to increase with time, reaching a steady level only after an initial delay or ‘lag phase’. This behavior needs to be interpreted by the experimentalists. To assist interpretation, this article analyzes the many reasons why, during an enzyme assay, the observed rate can be slow in the beginning and then progressively accelerate. The possible causes range from trivial artifacts to instances in which deeper mechanistic or biophysical factors are at play. We provide practical examples for most of these causes, based firstly on experiments conducted with ornithine δ-aminotransferase and with other pyridoxal-phosphate dependent enzymes that have been studied in our laboratory. On the side to this survey, we provide evidence that the product of the ornithine δ-aminotransferase reaction, glutamate 5-semialdehyde, cyclizes spontaneously to pyrroline 5-carboxylate with a rate constant greater than 3 s−1.
2020
Off to a slow start: Analyzing lag phases and accelerating rates in steady-state enzyme kinetics / Zangelmi, E.; Ronda, L.; Castagna, C.; Campanini, B.; Veiga-da-Cunha, M.; Van Schaftingen, E.; Peracchi, A.. - In: ANALYTICAL BIOCHEMISTRY. - ISSN 0003-2697. - 593:(2020), pp. 113595.1-113595.11. [10.1016/j.ab.2020.113595]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2874998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact