The function of monoacylglycerol lipase (MGL), a key actor in the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2AG), is tightly controlled by the cell's redox state: oxidative signals such as hydrogen peroxide suppress MGL activity in a reversible manner through sulfenylation of the peroxidatic cysteines, C201 and C208. Here, using as a starting point the crystal structures of human MGL (hMGL), we present evidence from molecular dynamics and metadynamics simulations along with high-resolution mass spectrometry studies indicating that sulfenylation of C201 and C208 alters the conformational equilibrium of the membrane-associated lid domain of MGL to favour closed conformations of the enzyme that do not permit the entry of substrate into the active site.
Free-energy studies reveal a possible mechanism for oxidation-dependent inhibition of MGL / Scalvini, Laura; Vacondio, Federica; Bassi, Michele; Pala, Daniele; Lodola, Alessio; Rivara, Silvia; Jung, Kwang Mook; Piomelli, Daniele; Mor, Marco. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 6:(2016), pp. 1-12. [10.1038/srep31046]
Free-energy studies reveal a possible mechanism for oxidation-dependent inhibition of MGL
SCALVINI, Laura;VACONDIO, Federica;BASSI, Michele;PALA, Daniele;LODOLA, Alessio;RIVARA, Silvia;MOR, Marco
2016-01-01
Abstract
The function of monoacylglycerol lipase (MGL), a key actor in the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2AG), is tightly controlled by the cell's redox state: oxidative signals such as hydrogen peroxide suppress MGL activity in a reversible manner through sulfenylation of the peroxidatic cysteines, C201 and C208. Here, using as a starting point the crystal structures of human MGL (hMGL), we present evidence from molecular dynamics and metadynamics simulations along with high-resolution mass spectrometry studies indicating that sulfenylation of C201 and C208 alters the conformational equilibrium of the membrane-associated lid domain of MGL to favour closed conformations of the enzyme that do not permit the entry of substrate into the active site.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.