The development of silica-based sol-gel techniques compatible with the retention of protein structure and function started more than 20 years ago, mainly for the design of biotechnological devices or biomedical applications. Silica gels are optically transparent, exhibit good mechanical stability, are manufactured with different geometries, and are easily separated from the reaction media. Biomolecules encapsulated in silica gel normally retain their structural and functional properties, are stabilized with respect to chemical and physical insults, and can sometimes exhibit enhanced activity in comparison to the soluble form. This review briefly describes the chemistry of protein encapsulation within the pores of a silica gel three-dimensional network, the mechanism of interaction between the protein and the gel matrix, and its effects on protein structure, function, stability and dynamics. The main applications in the field of biosensor design are described. Special emphasis is devoted to silica gel encapsulation as a tool to selectively stabilize subsets of protein conformations for biochemical and biophysical studies, an application where silica-based encapsulation demonstrated superior performance with respect to other immobilization techniques. - See more at: http://www.eurekaselect.com/131858/article#sthash.MtnqR4JR.dpuf

Immobilization of proteins in silica gel: Biochemical and biophysical properties / Ronda, Luca; Bruno, Stefano; Campanini, Barbara; Mozzarelli, Andrea; Abbruzzetti, Stefania; Viappiani, Cristiano; Cupane, A; Levantino, M; Bettati, Stefano. - In: CURRENT ORGANIC CHEMISTRY. - ISSN 1385-2728. - 19:17(2015), pp. 1653-1668. [10.2174/1385272819666150601211349]

Immobilization of proteins in silica gel: Biochemical and biophysical properties

RONDA, Luca;BRUNO, Stefano;CAMPANINI, Barbara;MOZZARELLI, Andrea;ABBRUZZETTI, Stefania;VIAPPIANI, Cristiano;BETTATI, Stefano
2015-01-01

Abstract

The development of silica-based sol-gel techniques compatible with the retention of protein structure and function started more than 20 years ago, mainly for the design of biotechnological devices or biomedical applications. Silica gels are optically transparent, exhibit good mechanical stability, are manufactured with different geometries, and are easily separated from the reaction media. Biomolecules encapsulated in silica gel normally retain their structural and functional properties, are stabilized with respect to chemical and physical insults, and can sometimes exhibit enhanced activity in comparison to the soluble form. This review briefly describes the chemistry of protein encapsulation within the pores of a silica gel three-dimensional network, the mechanism of interaction between the protein and the gel matrix, and its effects on protein structure, function, stability and dynamics. The main applications in the field of biosensor design are described. Special emphasis is devoted to silica gel encapsulation as a tool to selectively stabilize subsets of protein conformations for biochemical and biophysical studies, an application where silica-based encapsulation demonstrated superior performance with respect to other immobilization techniques. - See more at: http://www.eurekaselect.com/131858/article#sthash.MtnqR4JR.dpuf
2015
Immobilization of proteins in silica gel: Biochemical and biophysical properties / Ronda, Luca; Bruno, Stefano; Campanini, Barbara; Mozzarelli, Andrea; Abbruzzetti, Stefania; Viappiani, Cristiano; Cupane, A; Levantino, M; Bettati, Stefano. - In: CURRENT ORGANIC CHEMISTRY. - ISSN 1385-2728. - 19:17(2015), pp. 1653-1668. [10.2174/1385272819666150601211349]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2797669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact