Fusarium mycotoxins are a relevant problem in the cereal supply chain at a worldwide level, with wheat, maize and barley being the main contaminated crops. Mould growth can happen in the preharvest phase and also during transport and storage due to ineffective drying conditions. Among Fusarium toxins, deoxynivalenol (DON) is considered the most important contaminant in wheat due to its widespread occurrence. In the last years the European Food Safety Authority (EFSA) and the European Commission have frequently expressed opinions on Fusarium toxins, setting limits, regulations and guidelines in order to reduce their levels in raw materials and food commodities. In particular, European legislation (Reg. 1881/2006) sets the maximum limit for DON in flour and bread as 750 and 500 microg kg(-1) respectively. Relatively few studies have taken into account the loss of trichothecenes during processing, focusing on how processing factors may influence their degradation. In particular, the description of DON behaviour during bread-making is very difficult, since complex physico-chemical modifications occur during the transformation of the raw ingredients into the final product. In the present study, we studied how DON concentration may be influenced by modifying bread-making parameters, with a special emphasis on the fermentation and baking stages, starting from a naturally contaminated flour at both pilot and industrial scales. Exploiting the power of a Design of Experiments (DoE) approach to consider the great complexity of the studied system, the obtained model shows satisfying goodness-of-fit and prediction, suggesting that the baking step (time/temperature ranges) is crucial for minimizing native DON level in bread.
Fate of Fusarium mycotoxins in the cereal product supply chain: the deoxynivalenol (DON) case within industrial bread-making technology / E., Bergamini; D., Catellani; Dall'Asta, Chiara; Galaverna, Gianni; Dossena, Arnaldo; Marchelli, Rosangela; M., Suman. - In: FOOD ADDITIVES & CONTAMINANTS. PART A. CHEMISTRY, ANALYSIS, CONTROL, EXPOSURE & RISK ASSESSMENT. - ISSN 1944-0057. - 27:(2010), pp. 677-687. [10.1080/19440041003660117]
Fate of Fusarium mycotoxins in the cereal product supply chain: the deoxynivalenol (DON) case within industrial bread-making technology
DALL'ASTA, Chiara;GALAVERNA, Gianni;DOSSENA, Arnaldo;MARCHELLI, Rosangela;
2010-01-01
Abstract
Fusarium mycotoxins are a relevant problem in the cereal supply chain at a worldwide level, with wheat, maize and barley being the main contaminated crops. Mould growth can happen in the preharvest phase and also during transport and storage due to ineffective drying conditions. Among Fusarium toxins, deoxynivalenol (DON) is considered the most important contaminant in wheat due to its widespread occurrence. In the last years the European Food Safety Authority (EFSA) and the European Commission have frequently expressed opinions on Fusarium toxins, setting limits, regulations and guidelines in order to reduce their levels in raw materials and food commodities. In particular, European legislation (Reg. 1881/2006) sets the maximum limit for DON in flour and bread as 750 and 500 microg kg(-1) respectively. Relatively few studies have taken into account the loss of trichothecenes during processing, focusing on how processing factors may influence their degradation. In particular, the description of DON behaviour during bread-making is very difficult, since complex physico-chemical modifications occur during the transformation of the raw ingredients into the final product. In the present study, we studied how DON concentration may be influenced by modifying bread-making parameters, with a special emphasis on the fermentation and baking stages, starting from a naturally contaminated flour at both pilot and industrial scales. Exploiting the power of a Design of Experiments (DoE) approach to consider the great complexity of the studied system, the obtained model shows satisfying goodness-of-fit and prediction, suggesting that the baking step (time/temperature ranges) is crucial for minimizing native DON level in bread.File | Dimensione | Formato | |
---|---|---|---|
2.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
610.24 kB
Formato
Adobe PDF
|
610.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.