A virtual reality system enabling high-level programming of robot grasps is described. The system is designed to support programming by demonstration (PbD), an approach aimed at simplifying robot programming and empowering even unexperienced users with the ability to easily transfer knowledge to a robotic system. Programming robot grasps from human demonstrations requires an analysis phase, comprising learning and classification of human grasps, as well as a synthesis phase, where an appropriate human-demonstrated grasp is imitated and adapted to a specific robotic device and object to be grasped. The virtual reality system described in this paper supports both phases, thereby enabling end-to-end imitation-based programming of robot grasps. Moreover, as in the PbD approach robot environment interactions are no longer explicitly programmed, the system includes a method for automatic environment reconstruction that relieves the designer from manually editing the pose of the objects in the scene and enables intelligent manipulation. A workspace modeling technique based on monocular vision and computation of edge-face graphs is proposed. The modeling algorithm works in real time and supports registration of multiple views. Object recognition and workspace reconstruction features, along with grasp analysis and synthesis, have been tested in simulated tasks involving 3D user interaction and programming of assembly operations. Experiments reported in the paper assess the capabilities of the three main components of the system: the grasp recognizer, the vision-based environment modeling system, and the grasp synthesizer.
Grasp Programming by Demonstration in Virtual Reality with Automatic Environment Reconstruction / Aleotti, Jacopo; Caselli, Stefano. - In: VIRTUAL REALITY. - ISSN 1359-4338. - 16:(2012), pp. 87-104. [10.1007/s10055-010-0172-8]
Grasp Programming by Demonstration in Virtual Reality with Automatic Environment Reconstruction
ALEOTTI, Jacopo;CASELLI, Stefano
2012-01-01
Abstract
A virtual reality system enabling high-level programming of robot grasps is described. The system is designed to support programming by demonstration (PbD), an approach aimed at simplifying robot programming and empowering even unexperienced users with the ability to easily transfer knowledge to a robotic system. Programming robot grasps from human demonstrations requires an analysis phase, comprising learning and classification of human grasps, as well as a synthesis phase, where an appropriate human-demonstrated grasp is imitated and adapted to a specific robotic device and object to be grasped. The virtual reality system described in this paper supports both phases, thereby enabling end-to-end imitation-based programming of robot grasps. Moreover, as in the PbD approach robot environment interactions are no longer explicitly programmed, the system includes a method for automatic environment reconstruction that relieves the designer from manually editing the pose of the objects in the scene and enables intelligent manipulation. A workspace modeling technique based on monocular vision and computation of edge-face graphs is proposed. The modeling algorithm works in real time and supports registration of multiple views. Object recognition and workspace reconstruction features, along with grasp analysis and synthesis, have been tested in simulated tasks involving 3D user interaction and programming of assembly operations. Experiments reported in the paper assess the capabilities of the three main components of the system: the grasp recognizer, the vision-based environment modeling system, and the grasp synthesizer.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.