The scope of the barium salt of p-tert-butylcalix[4]arene-crown-5 as a transacylation catalyst has been defined by evaluating its efficiency in the methanolysis of a series of aryl acetates at 25.0 °C in MeCN/MeOH 9:1 (vlv) under slightly basic conditions. In this system a phenolic hydroxyl is the acyl-receiving and -releasing unit in a double-displacement mechanism. The complexed barium ion acts both as a nucleophile carrier and a built-in Lewis acid in providing electrophilic assistance to the ester carbonyl both in the acylation and deacylation step (nucleophilic - electrophilic catalysis). Turnover capability is ensured by the acylated intermediate reacting with the solvent more rapidly than the original ester, but a serious drawback derives from the incursion of backacylation of the liberated phenol. A gradual shift from rate-determining deacylation (p-nitrophenyl acetate) to rate-determining acylation (phenyl acetate) is observed along the investigated series. It is shown that the scope of the catalyst is restricted to acetate esters whose reactivity lies in the range approximately defined by the phenyl acetate-p-nitrophenyl acetate pair, with a maximum efficiency for p-chlorophenyl acetate. Moreover, the catalyst effectively promotes ester interchange between phenols, showing that its activity is not limited to solvolysis reactions. The very high sensitivity of the rate of acylation of the catalyst to leaving group basicity has been interpreted as due to rate-determining decomposition of the tetrahedral intermediate, which is believed to arise from the presumably low basicity of the metal ion stabilized nucleophile. The turnover frequency was in the range of 3.8 × 10-4 min-1 for phenyl acetate to 7.4 × 10-3 min-1 for p-nitrophenyl acetate ([ArOAc]0= 4.0 mM]). A first attempt to enhance the rate of acylation of the catalyst through intramolecular general acid catalysis is also described.

Catalysis of Acyl Group Transfer by a Double-Displacement Mechanism. The Cleavage of Aryl Esters Catalyzed by Calixcrown-Ba2+ Complexes / Baldini, Laura; Bracchini, C.; Cacciapaglia, R.; Casnati, Alessandro; Mandolini, L.; Ungaro, Rocco. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. - 6:(2000), pp. 1322-1330. [10.1002/(SICI)1521-3765(20000417)6:8<1322::AID-CHEM1322>3.0.CO;2-F]

Catalysis of Acyl Group Transfer by a Double-Displacement Mechanism. The Cleavage of Aryl Esters Catalyzed by Calixcrown-Ba2+ Complexes

BALDINI, Laura;CASNATI, Alessandro;UNGARO, Rocco
2000-01-01

Abstract

The scope of the barium salt of p-tert-butylcalix[4]arene-crown-5 as a transacylation catalyst has been defined by evaluating its efficiency in the methanolysis of a series of aryl acetates at 25.0 °C in MeCN/MeOH 9:1 (vlv) under slightly basic conditions. In this system a phenolic hydroxyl is the acyl-receiving and -releasing unit in a double-displacement mechanism. The complexed barium ion acts both as a nucleophile carrier and a built-in Lewis acid in providing electrophilic assistance to the ester carbonyl both in the acylation and deacylation step (nucleophilic - electrophilic catalysis). Turnover capability is ensured by the acylated intermediate reacting with the solvent more rapidly than the original ester, but a serious drawback derives from the incursion of backacylation of the liberated phenol. A gradual shift from rate-determining deacylation (p-nitrophenyl acetate) to rate-determining acylation (phenyl acetate) is observed along the investigated series. It is shown that the scope of the catalyst is restricted to acetate esters whose reactivity lies in the range approximately defined by the phenyl acetate-p-nitrophenyl acetate pair, with a maximum efficiency for p-chlorophenyl acetate. Moreover, the catalyst effectively promotes ester interchange between phenols, showing that its activity is not limited to solvolysis reactions. The very high sensitivity of the rate of acylation of the catalyst to leaving group basicity has been interpreted as due to rate-determining decomposition of the tetrahedral intermediate, which is believed to arise from the presumably low basicity of the metal ion stabilized nucleophile. The turnover frequency was in the range of 3.8 × 10-4 min-1 for phenyl acetate to 7.4 × 10-3 min-1 for p-nitrophenyl acetate ([ArOAc]0= 4.0 mM]). A first attempt to enhance the rate of acylation of the catalyst through intramolecular general acid catalysis is also described.
2000
Catalysis of Acyl Group Transfer by a Double-Displacement Mechanism. The Cleavage of Aryl Esters Catalyzed by Calixcrown-Ba2+ Complexes / Baldini, Laura; Bracchini, C.; Cacciapaglia, R.; Casnati, Alessandro; Mandolini, L.; Ungaro, Rocco. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. - 6:(2000), pp. 1322-1330. [10.1002/(SICI)1521-3765(20000417)6:8<1322::AID-CHEM1322>3.0.CO;2-F]
File in questo prodotto:
File Dimensione Formato  
published.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 182 kB
Formato Adobe PDF
182 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1451895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact