This paper discusses the development of an Integrated Building Energy Model (IBEM) in MATLAB (R2024b) for a university campus building. In the general context of the development of integrated energy district models to guide the evolution and planning of smart energy grids for increased efficiency, resilience, and sustainability, this work describes in detail the development and use of an IBEM for a university campus building featuring a heat pump-based heating/cooling system and PV generation. The IBEM seamlessly integrates thermal and electrical aspects into a complete physical description of the energy performance of a smart building, thus distinguishing itself from co-simulation approaches in which different specialized tools are applied to the two aspects and connected at the level of data exchange. Also, the model, thanks to its physical, white-box nature, can be instanced repeatedly within the comprehensive electrical micro-grid model in which it belongs, with a straightforward change of case-specific parameter settings. The model incorporates a heat pump-based heating/cooling system and photovoltaic generation. The model’s components, including load modeling, heating/cooling system simulation, and heat pump implementation are described in detail. Simulation results illustrate the building’s detailed power consumption and thermal behavior throughout a sample year. Since the building model (along with the whole campus micro-grid model) is implemented in the MATLAB Simulink environment, it is fully portable and exploitable within a large, world-wide user community, including researchers, utility companies, and educational institutions. This aspect is particularly relevant considering that most studies in the literature employ co-simulation environments involving multiple simulation software, which increases the framework’s complexity and presents challenges in models’ synchronization and validation.

An Integrated Building Energy Model in MATLAB / Simonazzi, Marco; Delmonte, Nicola; Cova, Paolo; Menozzi, Roberto. - In: ENERGIES. - ISSN 1996-1073. - 18:11(2025). [10.3390/en18112948]

An Integrated Building Energy Model in MATLAB

Simonazzi, Marco;Delmonte, Nicola;Cova, Paolo;Menozzi, Roberto
2025-01-01

Abstract

This paper discusses the development of an Integrated Building Energy Model (IBEM) in MATLAB (R2024b) for a university campus building. In the general context of the development of integrated energy district models to guide the evolution and planning of smart energy grids for increased efficiency, resilience, and sustainability, this work describes in detail the development and use of an IBEM for a university campus building featuring a heat pump-based heating/cooling system and PV generation. The IBEM seamlessly integrates thermal and electrical aspects into a complete physical description of the energy performance of a smart building, thus distinguishing itself from co-simulation approaches in which different specialized tools are applied to the two aspects and connected at the level of data exchange. Also, the model, thanks to its physical, white-box nature, can be instanced repeatedly within the comprehensive electrical micro-grid model in which it belongs, with a straightforward change of case-specific parameter settings. The model incorporates a heat pump-based heating/cooling system and photovoltaic generation. The model’s components, including load modeling, heating/cooling system simulation, and heat pump implementation are described in detail. Simulation results illustrate the building’s detailed power consumption and thermal behavior throughout a sample year. Since the building model (along with the whole campus micro-grid model) is implemented in the MATLAB Simulink environment, it is fully portable and exploitable within a large, world-wide user community, including researchers, utility companies, and educational institutions. This aspect is particularly relevant considering that most studies in the literature employ co-simulation environments involving multiple simulation software, which increases the framework’s complexity and presents challenges in models’ synchronization and validation.
2025
An Integrated Building Energy Model in MATLAB / Simonazzi, Marco; Delmonte, Nicola; Cova, Paolo; Menozzi, Roberto. - In: ENERGIES. - ISSN 1996-1073. - 18:11(2025). [10.3390/en18112948]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/3024655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact