Coffee pulp is a by-product characterized by its richness in phenolic compounds. This study examined the catabolism of (poly)phenols in digested coffee pulp flour (CPF) and extract (CPE) during in vitro colonic fermentation. After a simulated gastrointestinal digestion, samples were fermented using human microbiota and (poly)phenol transformations were analyzed by UHPLC-ESI-MS/MS. Digested CPF and CPE contained high amounts of phenolic acids, notably 3′,4′-dihydroxycinnamic (99.7–240.1 μmol 100 g−1) and 3,4-dihydroxybenzoic acid (174.1–491.4 μmol 100 g−1). During the in vitro fecal fermentation, phenylpropanoic acids (1.5- to 2.6-fold), phenyl-γ-valerolactones (1.3- to 23-fold), phenylvaleric acids (1.1- to 2-fold) and benzene derivatives (1.5-fold) increased; while benzoic and cinnamic acids, cinnamoylquinic derivatives, flavonols, benzaldehydes and diphenylpropan-2-ols decreased. The (poly)phenols in CPF were catabolized more slowly than in CPE, suggesting protection of the fibrous matrix against phenolic degradation. Coffee pulp may be a promising food ingredient rich in (poly)phenols contributing to the prevention of intestinal diseases.
Microbial catabolism of coffee pulp (poly)phenols during in vitro colonic fermentation / Canas, S.; Tosi, N.; Nunez-Gomez, V.; Del Rio, D.; Mena, P.; Martin-Cabrejas, M. A.; Aguilera, Y.. - In: FOOD CHEMISTRY. - ISSN 0308-8146. - 463:Pt 3(2025). [10.1016/j.foodchem.2024.141354]
Microbial catabolism of coffee pulp (poly)phenols during in vitro colonic fermentation
Tosi N.;Del Rio D.;Mena P.
;
2025-01-01
Abstract
Coffee pulp is a by-product characterized by its richness in phenolic compounds. This study examined the catabolism of (poly)phenols in digested coffee pulp flour (CPF) and extract (CPE) during in vitro colonic fermentation. After a simulated gastrointestinal digestion, samples were fermented using human microbiota and (poly)phenol transformations were analyzed by UHPLC-ESI-MS/MS. Digested CPF and CPE contained high amounts of phenolic acids, notably 3′,4′-dihydroxycinnamic (99.7–240.1 μmol 100 g−1) and 3,4-dihydroxybenzoic acid (174.1–491.4 μmol 100 g−1). During the in vitro fecal fermentation, phenylpropanoic acids (1.5- to 2.6-fold), phenyl-γ-valerolactones (1.3- to 23-fold), phenylvaleric acids (1.1- to 2-fold) and benzene derivatives (1.5-fold) increased; while benzoic and cinnamic acids, cinnamoylquinic derivatives, flavonols, benzaldehydes and diphenylpropan-2-ols decreased. The (poly)phenols in CPF were catabolized more slowly than in CPE, suggesting protection of the fibrous matrix against phenolic degradation. Coffee pulp may be a promising food ingredient rich in (poly)phenols contributing to the prevention of intestinal diseases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.