In this paper we consider the vector -valued Schr & ouml;dinger operator -Delta + V , where the potential term V is a matrix -valued function whose entries belong to L 1loc ( R d ) and, for every x E R d , V ( x ) is a symmetric and nonnegative definite matrix, with non positive off -diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in L 1 ( R d , R m ). Assuming further that the minimal eigenvalue of V belongs to some reverse H & ouml;lder class of order q E (1, oo) U {oo}, we obtain maximal inequality in L p ( R d , R m ), for p in between 1 and some q, and generation results. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Lp maximal regularity for vector-valued Schrödinger operators / Addona, Davide; Leone, Vincenzo; Lorenzi, Luca; Rhandi, Abdelaziz. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 187:(2024), pp. 171-206. [10.1016/j.matpur.2024.05.010]

Lp maximal regularity for vector-valued Schrödinger operators

Addona, Davide;Lorenzi, Luca
;
Rhandi, Abdelaziz
2024-01-01

Abstract

In this paper we consider the vector -valued Schr & ouml;dinger operator -Delta + V , where the potential term V is a matrix -valued function whose entries belong to L 1loc ( R d ) and, for every x E R d , V ( x ) is a symmetric and nonnegative definite matrix, with non positive off -diagonal terms and with eigenvalues comparable each other. For this class of potential terms we obtain maximal inequality in L 1 ( R d , R m ). Assuming further that the minimal eigenvalue of V belongs to some reverse H & ouml;lder class of order q E (1, oo) U {oo}, we obtain maximal inequality in L p ( R d , R m ), for p in between 1 and some q, and generation results. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
2024
Lp maximal regularity for vector-valued Schrödinger operators / Addona, Davide; Leone, Vincenzo; Lorenzi, Luca; Rhandi, Abdelaziz. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 187:(2024), pp. 171-206. [10.1016/j.matpur.2024.05.010]
File in questo prodotto:
File Dimensione Formato  
pubb21_schrodinger_vett_luca_abdel_vinc.pdf

solo utenti autorizzati

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 645.58 kB
Formato Adobe PDF
645.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Schroedinger.pdf

embargo fino al 01/01/2026

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 268.42 kB
Formato Adobe PDF
268.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/3005137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact