The ability to exploit energy autonomously is one of the hallmarks of Life. Mastering such processes in artificial nanosystems can open technological opportunities. In the last decades, light- and chemically-driven autonomous systems have been developed in relation to conformational motion and self-assembly, mostly in relation to molecular motors. On the contrary, despite electrical energy is an attractive energy source to power nanosystems, its autonomous harnessing received little attention. Herein we consider an operation mode allowing the autonomous exploitation of electrical energy by a self-assembling system. Threading and dethreading motions of a pseudorotaxane take place autonomously in solution, powered by the current flowing between the electrodes of a scanning electrochemical microscope. The underlying autonomous energy ratchet mechanism drives the self-assembly steps away from equilibrium with a higher energy efficiency compared to other autonomous systems. The strategy is general and might be extended to other redox-driven systems.

Autonomous Non-Equilibrium Self-Assembly and Molecular Movements Powered by Electrical Energy / Ragazzon, Giulio; Malferrari, Marco; Arduini, Arturo; Secchi, Andrea; Rapino, Stefania; Silvi, Serena; Credi, Alberto. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - (2023). [10.1002/anie.202214265]

Autonomous Non-Equilibrium Self-Assembly and Molecular Movements Powered by Electrical Energy

Arduini, Arturo
Membro del Collaboration Group
;
Secchi, Andrea
Membro del Collaboration Group
;
2023-01-01

Abstract

The ability to exploit energy autonomously is one of the hallmarks of Life. Mastering such processes in artificial nanosystems can open technological opportunities. In the last decades, light- and chemically-driven autonomous systems have been developed in relation to conformational motion and self-assembly, mostly in relation to molecular motors. On the contrary, despite electrical energy is an attractive energy source to power nanosystems, its autonomous harnessing received little attention. Herein we consider an operation mode allowing the autonomous exploitation of electrical energy by a self-assembling system. Threading and dethreading motions of a pseudorotaxane take place autonomously in solution, powered by the current flowing between the electrodes of a scanning electrochemical microscope. The underlying autonomous energy ratchet mechanism drives the self-assembly steps away from equilibrium with a higher energy efficiency compared to other autonomous systems. The strategy is general and might be extended to other redox-driven systems.
2023
Autonomous Non-Equilibrium Self-Assembly and Molecular Movements Powered by Electrical Energy / Ragazzon, Giulio; Malferrari, Marco; Arduini, Arturo; Secchi, Andrea; Rapino, Stefania; Silvi, Serena; Credi, Alberto. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - (2023). [10.1002/anie.202214265]
File in questo prodotto:
File Dimensione Formato  
94_Angew_23.pdf

accesso aperto

Tipologia: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 636.66 kB
Formato Adobe PDF
636.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2934531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
social impact