We show that connected graphs admit sublinear longest path transversals. This improves an earlier result of Rautenbach and Sereni and is related to the fifty-year-old question of whether connected graphs admit longest path transversals of constant size. The same technique allows us to show that 2-connected graphs admit sublinear longest cycle transversals.

Sublinear longest path transversals / A. Long Jr., James; Milans, Kevin G.; Munaro, Andrea. - In: SIAM JOURNAL ON DISCRETE MATHEMATICS. - ISSN 0895-4801. - 35:3(2021), pp. 1673-1677. [10.1137/20M1362577]

Sublinear longest path transversals

Andrea Munaro
2021-01-01

Abstract

We show that connected graphs admit sublinear longest path transversals. This improves an earlier result of Rautenbach and Sereni and is related to the fifty-year-old question of whether connected graphs admit longest path transversals of constant size. The same technique allows us to show that 2-connected graphs admit sublinear longest cycle transversals.
2021
Sublinear longest path transversals / A. Long Jr., James; Milans, Kevin G.; Munaro, Andrea. - In: SIAM JOURNAL ON DISCRETE MATHEMATICS. - ISSN 0895-4801. - 35:3(2021), pp. 1673-1677. [10.1137/20M1362577]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2930773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact