n this paper we extend and improve all the previous results known in literature about weighted average, with Cesaro weight, of representations of an integer as sum of a positive arbitrary number of prime powers and a non-negative arbitrary number of squares. Our result includes all cases dealt with so far and allows us to obtain the best possible outcome using the chosen technique.

A Cesàro average for an additive problem with an arbitrary number of prime powers and squares / Cantarini, Marco; Gambini, Alessandro; Zaccagnini, Alessandro. - In: RESEARCH IN NUMBER THEORY. - ISSN 2363-9555. - 8:3(2022). [10.1007/s40993-022-00347-4]

A Cesàro average for an additive problem with an arbitrary number of prime powers and squares

Zaccagnini, Alessandro
2022-01-01

Abstract

n this paper we extend and improve all the previous results known in literature about weighted average, with Cesaro weight, of representations of an integer as sum of a positive arbitrary number of prime powers and a non-negative arbitrary number of squares. Our result includes all cases dealt with so far and allows us to obtain the best possible outcome using the chosen technique.
2022
A Cesàro average for an additive problem with an arbitrary number of prime powers and squares / Cantarini, Marco; Gambini, Alessandro; Zaccagnini, Alessandro. - In: RESEARCH IN NUMBER THEORY. - ISSN 2363-9555. - 8:3(2022). [10.1007/s40993-022-00347-4]
File in questo prodotto:
File Dimensione Formato  
s40993-022-00347-4.pdf

accesso aperto

Tipologia: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 426.07 kB
Formato Adobe PDF
426.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2927311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact