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Abstract

In this paper we extend and improve all the previous results known in literature about
weighted average, with Cesàro weight, of representations of an integer as sum of a
positive arbitrary number of prime powers and a non-negative arbitrary number of
squares. Our result includes all cases dealt with so far and allows us to obtain the best
possible outcome using the chosen technique.
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1 introduction
Additive problems with prime variables are a very popular topic in Analytic Number
Theory. The most famous open problem is the binary Goldbach conjecture, viz. that
every even integer larger than 4 is the sum of two odd primes. The corresponding problem
for odd integers has been partially solved by Vinogradov [27] and then finally settled by
Helfgott in a series of papers [16–18]. For a historical account of the progress in the binary
Goldbach problem see e.g. Bhowmik and Halupczok [2].
Given the inherent difficulty of the problem, some variants have also been studied: in

this paper we are concerned with weighted averages of the number of representations
of an integer in the desired shape. We will consider as summands both powers of prime
numbers and perfect squares. Given a real number k ≥ 0, we introduce the Cesàro weight
wk defined by

wk (x) =

⎧
⎪⎨

⎪⎩

(1 − x)k

�(k + 1)
if x ∈ [0, 1],

0 if x > 1.

This approach was used by Languasco and Zaccagnini in [22] for the binary Goldbach
problem: they proved the “explicit formula”
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∑

n≥1
RG(n)wk

( n
N

)
=

∑

n≤N
RG(n)

(1 − n/N )k

�(k + 1)
= N 2

�(k + 3)
− 2

∑

ρ

�(ρ)
�(ρ + k + 2)

Nρ+1

+
∑

ρ1

∑

ρ2

�(ρ1)�(ρ2)
�(ρ1 + ρ2 + k + 1)

Nρ1+ρ2 + Ok (N )

for k > 1 where RG(n) =
∑

m1+m2=n
�(m1)�(m2) and �(n) is the von Mangoldt function.

Here ρ ranges over non-trivial zeros of the Riemann zeta-function. We point out that the
error term in [22] has been corrected in Languasco’s survey paper [19], where the Author
also gives a thorough introduction to these problems. This resultwas extended to all k > 0,
with amore precise error term and a suitable interpretation for the infinite sumswhen 0 <

k < 1, byBrüdern,Kaczorowski andPerelli [3], whoused a completely different technique.
Given the flexibility of the technique introduced in [22], the latter has been applied to

other types of additive problems like the one studied in [23]. Similar averages of arith-
metical functions are common in the literature: see, e.g., Berndt [1].
The presence of the Gamma function in the above asymptotic development stems from

the use of an integral formula due to Laplace, see (1) below, and of the explicit formula for
the infinite exponential sum over power of primes, which is defined in (3); see Lemma 2.
We outline the method in Sect. 2 and then give all definitions in Sect. 3.
However, the same technique can also be used in mixed problems, namely when we

consider representations of an integer as a sum of powers of primes and of squares of
integers; see Cantarini [4,5], Languasco and Zaccagnini [21] and [24]. In this case, Bessel
functions naturally arise because the infinite exponential sum over squares satisfies a
functional equation, see (4) below. The asymptotic expansion we seek tends to be more
complicated than in the case without squares, but nevertheless it can be obtained as in
the cases described above.
The presence of a smooth weight allows to obtain an asymptotic formula with terms of

decreasing orders of magnitude and depending on the non-trivial zeros of the Riemann
zeta function; furthermore, theweight allows toobtain results independent of theRiemann
hypothesis. Since the Cesàro weights depend on a non-negative real parameter k and are
equal to 1 if k = 0 (that is, for k = 0 we have a simple average without weights) it is
important to obtain results with k as small as possible. During the last few years there
have been some improvements regarding the optimal k in the case of the Goldbach’s
problem: in [22] results hold for k > 1, in Goldston and Yang [15] (assuming Riemann
hypothesis) and in Cantarini [7] (unconditionally) for k = 1 and in Brüdern et al. [3] for
k > 0. Unfortunately, for case k = 0, that is, without the Cesàro weights, it is not yet
possible to obtain the same form or the same quantity of terms as in the other cases (see,
for example, [6,20] and Pintz [25]).
In this paper, we prove a result which incorporates all the previous results in the case of

Cesàro averages and we show how the technique, although very general and applicable to
many problems, makes the lower bound of k worse as the number of primes and squares
involved increases, so as to confirm what has already been suggested by the lower bound
for k obtained in [4] and [5]. Indeed, in these two articles, for the first time, the technique
is extended to problems with a number of summands greater than two; this translates
into a greater number of series / integral exchanges to be made and, consequently, a more
restrictive constraint on k .
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2 Outline of themethod
Wenow briefly explain themajor ideas behind this theorem andwhy we use series instead
of finite exponential sums: one of the main tools of this technique is Laplace’s formula (1)
in [12], namely

1
2π i

∫

(a)
v−sev dv = 1

� (s)
where

∫

(a)
:=

∫ a+i∞

a−i∞
(1)

for Re (s) > 0 and a > 0; see formula 5.4(1) on page 238 of [13]. Assume that we have a
problem with r summands, and call R(n) the number of representation R(n) of the integer
n in the desired shape. The Laplace transform allows us to transform a weighted sumwith
Cesàro weight into a product of generating functions, which we will describe in detail
below. A general version of the transformation is the following:

∑

n≤N
R(n)

(N − n)k

�(k + 1)
=

∫

(a)
eNzz−k−1F1(z) · · · Fr(z) dz.

Here F1, …, Fr denote the infinite exponential sums related to either the powers of primes
or to the squares, which we will define more precisely in (2), but of course this formula is
quite general. We use a different normalization of Cesàro’s weight from [22].
The use of series complicates the treatment from the point of view of computation,

but has the advantage of providing the desired functional relationships that would not be
possible with truncated sums. For example, in Lemma 2 we have the sum over all zeros
of the Riemann zeta function without truncation. Furthermore, the series connected with
the squares of integers is related to the Jacobi functional equation, see (4) below for the
version that we actually use, which in turn gives rise to the Bessel functions.

3 Preliminary definitions andmain theorem
We now describe in detail the notations and conventions that we need throughout the
paper. Let d, h, N ∈ N, d > 0,N ≥ 2,m = (m1, . . . , md) ∈ N

d, r := (r1, . . . , rd) ∈ (
N

+)d ,
where 1 ≤ r1 ≤ r2 ≤ · · · ≤ rd , t := (t1, . . . , th) ∈ N

h and, in general, with bold letters, for
example f , we will indicate some vector that belongs to N

α or
(
N

+)α , for some positive
integer α.With the symbol ‖·‖wewill indicate the usual Euclidean norm, with the symbol
ρ, with or without subscripts, we will always indicate the non-trivial zeros of the Riemann
zeta function and the series

∑
ρ will always indicates the sum over all non trivial zeros of

ζ (s), with or without subscripts. With ρ := (ρs1 , . . . , ρsv ), where sj , j = 1, . . . , v belong to
some subset of N+.
For every J ⊆ D := {

1, . . . , d
}
we will define the scalar product

τ (�, r, J) :=
∑

j∈J

	j

rj

where � = (	1, . . . ,	d). In most cases along the paper we will use � = ρ; in addition,
we will use the short definition τ (1, r, J) = τ (r, J) := ∑

j∈J 1
rj .

We will also indicate by
∑

J⊆D the sums over all the possible subsets of D. Taking
n ∈ N, we set

Rd,h,r (n) :=
∑

mr1
1 +···+mrd

d +t21+···+t2h=n

� (m1) · · ·� (md)
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where� (m) is the usual vonMangoldt-function.We want to find an asymptotic formula,
as N → +∞, for

∑

n≤N
Rd,h,r (n)

(N − n)k

� (k + 1)

where k > 0 is a real parameter and � (x) is the Euler Gamma-function.
Let Z := {s ∈ C, 0 ≤ Re (s) ≤ 1 : ζ (s) = 0} be the set of the non-trivial zeros of the

Riemann zeta-function and let J ⊆ D. We will use the symbols
∑

ρ∈Z|J|
=

∑

ρj1

· · ·
∑

ρj|J|

and

1
r �

(ρ

r
)
:= 1

rj1
�

(
ρj1
rj1

)

· · · 1
rj|J|

�

(
ρj|J|
rj|J|

)

where jα ∈ J, α = 1, . . . , |J|, every ρjα ∈ Z and rjα is the jα-th coordinate of the fixed
vector r = (r1, . . . , rd).
In analogy to the previous definition, we will use the following symbol

1
r �

(
1
r

)

:= 1
r1

�

(
1
r1

)

· · · 1
rd

�

(
1
rd

)

.

We finally introduce the following definitions for the terms of the development: notice
that summands containing the Bessel function, namely M2, M4 and M5 only appear if
h > 0. We set

M1 (N, k, d, h, r) := 1
2h

h∑


=0

(
h



)
π



2 (−1)h−
 Nk+τ (r,D)+ 


2

�
(
k + 1 + τ (r,D) + 


2
)
1
r �

(
1
r

)

,

M2 (N, k, d, h, r) := N
k+τ (r ,D)

2

πk+τ (r,D)

h−1∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(−1)η−
 B
(
τ (r,D)

)1
r �

(
1
r

)

,

M3 (N, k, d, h, r) := Nk (−1)d

2h

h∑


=0

(
h



)

(Nπ )


2 (−1)h−


×
∑

ρ∈Zd

1
r �

(ρ

r
) N τ (ρ,r,D)

�
(
k + 1 + 


2 + τ (ρ, r,D)
) .

M4 (N, k, d, h, r) := Nk/2 (−1)d

πk

h−1∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(−1)η−


×
∑

ρ∈Zd

1
r �

(ρ

r
) N τ (ρ,r,D)/2

πτ (ρ,r,D) B
(
τ (ρ, r ,D)

)
,

M5 (N, k, d, h, r) := Nk/2

πk

∑

I⊆D
|I |≥1

N
τ (r,I)
2 (−1)|D\I |

h∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(−1)η−


×
∑

ρ∈Z|D\I |

1
r �

(ρ

r
) N τ (ρ,r,D\I)/2

πτ (ρ,r,D\I) B
(
τ (r, I) + τ (ρ, r,D \ I) ),
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where

B(x) = Bk,h,η,
,N (x) = N
h−η+


4
∑

f ∈(N+)h−η

Jx+k+(h−η+
)/2
(
2π

√
N

∥
∥f

∥
∥
)

∥
∥f

∥
∥x+k+(h−η+
)/2 ,

with
∑

f ∈(N+)c
:=

∑

f1≥1
· · ·

∑

fc≥1
.

and Jv (u) is the Bessel J function of real argument u and complex order v.
The convergence of the mentioned series will be proved in section Sect. 5. The main

result of this article is the following theorem:

Theorem 1 Let d, h ∈ N, d > 0, let N be a sufficiently large integer. Let D = {
1, . . . , d

}

and, for every J ⊆ D (or with the notation I ⊆ D) let τ (r, J) := ∑
j∈J 1

rj , where 1 ≤ r1 ≤
r2 ≤ · · · ≤ rd. Then, for k > d+h

2 , we have that

∑

n≤N
Rd,h,r (n)

(N − n)k

� (k + 1)
=

5∑

j=1
Mj (N, k, d, h, r) + Or,d,h

(
Nk+h/2+τ (r,D)−1/rd

)
.

It is important to underline that in some particular configurations of the parameters
some terms of the asymptotic (but not the dominant term) could be incorporated in the
error. Despite the apparently complicated form of the terms, it is not difficult to recognize
the results obtained in the previous work on this topic, for example setting d = 2, h = 0
and r = (1, 1) (the Goldbach numbers case [22]) or r = (
1, 
2) , 1 ≤ 
1 ≤ 
2 integers (the
generalized Goldbach numbers case [23]). Furthermore, it is quite natural to conjecture
that at least the main term of this asymptotic is valid for k ≥ 0 instead of k > d+h

2 as
suggested by similar studies but with other techniques (see, e.g., the papers by the present
authors [10] and with Languasco [8]).
From (1) and suitable hypotheses, which we will explain in detail in the next sections,

we deduce

∑

n≤N
Rd,h,r (n)

(N − n)k

� (k + 1)
= 1

2π i

∫

(a)
eNzz−k−1S̃r1 (z) · · · S̃rd (z)ω2 (z)h dz (2)

where z = a + iy, a > 0, y ∈ R, where

S̃r (z) :=
∑

m≥1
� (m) e−mrz, ω2 (z) :=

∑

m≥1
e−m2z, (3)

are the series that embody the prime powers and the squares, respectively. Since, as we
will see, it is possible to develop S̃r (z) as an asymptotic formula, the idea is to substitute
this formula for S̃r (z), exchange the integral with all the terms which are obtained from
the various products and finally bound the error. Another important aspect to emphasize
is that we work with squares, and so with ω2 (z), because this function is linked to the
well-known Jacobi theta 3 function

θ3 (z) :=
∑

m∈Z
e−m2z = 1 + 2ω2 (z)



50 Page 6 of 22 M. Cantarini et al. Res. Number Theory (2022) 8:50

and θ3 (z) satisfies the functional equation

θ3 (z) =
(π

z

)1/2
θ3

(
π2

z

)

, Re (z) > 0

(see, for example, PropositionVI.4.3, page 340, of [14])which implies a functional equation
for ω2 (z)

ω2 (z) = 1
2

(π

z

)1/2 − 1
2

+
(π

z

)1/2
ω2

(
π2

z

)

. (4)

This is fundamental for the present technique, because this functional equation allows us
to find the terms involving the Bessel J function and, since we do not have a functional
equation of this type for other powers than squares, we can only deal with this particular
case.
Various constraints on k arise at several places of our proof, the strongest being needed

in Sect. 6.2.2 in order to ensure convergence in the series for M3. See also the comment
just before Lemma 3.

4 Settings
For our purposes, we need a general version of the formula (1), so we recall the following
relations:

1
2π

∫

R

eiDu

(a + iu)s
du =

⎧
⎪⎨

⎪⎩

Ds−1e−aD

� (s)
, D > 0

0, D < 0
(5)

with Re (s) > 0, Re (a) > 0 and

1
2π

∫

R

1
(a + iu)s

du =
⎧
⎨

⎩

0, Re (s) > 1

1/2, Re (s) = 1
(6)

with Re (a) > 0 (see formulas (8) and (9) of [11]). We also need an integral representation
of the Bessel J function with real argument u and complex order v:

Jv (u) := (u/2)
2π i

∫

(a)
s−v−1ese−u2/(4s)ds (7)

for a > 0, u, v ∈ C with Re (v) > −1 (see, e.g., equation (8) on page 177 of [28]).
Assume that k > 0. From the definition of S̃r (z) and ω2 (z) (3), it is not difficult to note

that

S̃r1 (z) · · · S̃rd (z)ω2 (z)h =
∑

n≥1
Rd,h,r (n) e−nz.

Furthermore, from (5) and (6), we have that

∑

n≤N
Rd,h,r (n)

(N − n)k

� (k + 1)
=

∑

n≥1
Rd,h,r (n)

(
1

2π i

∫

(a)
e(N−n)zz−k−1 dz

)

. (8)
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Now we want to show that it is possible to exchange the integral with the series in the
right side of (8). By the Prime Number Theorem, we have that

S̃rj (a) ∼
�

(
1
rj

)

rja1/rj
(9)

as a → 0+(see [24]) and

|ω2 (z)| ≤ ω2 (a) ≤
∫ +∞

0
e−au2 du ≤ a−1/2

∫ +∞

0
e−v2 dv � a−1/2 (10)

and so
∑

n≥1

∣
∣Rd,h,r (n) e−nz∣∣ =

∑

n≥1
Rd,h,r (n) e−na = S̃r1 (a) · · · S̃rd (a)ω2 (a)h

�r,d,h a−τ (r,D)−h/2.

From the trivial estimate

∣
∣
∣eNz

∣
∣
∣

∣
∣
∣z−k−1

∣
∣
∣ � eNa

⎧
⎨

⎩

a−k−1,
∣
∣y

∣
∣ ≤ a

∣
∣y

∣
∣−k−1 ,

∣
∣y

∣
∣ > a

(11)

where f � g means g � f � g, we have

1
2π i

∫

(a)
eNzz−k−1S̃r1 (z) · · · S̃rd (z)ω2 (z)h dz

�r,d,h eNaa−τ (r ,D)−h/2
(∫ a

−a
a−k−1 dy +

∫ +∞

a
y−k−1 dy

)

�r,d,h eNaa−τ (r ,D)−h/2−k

for k > 0. Then, we can exchange the integral with the series and so we obtain the main
formula (2).

5 Lemmas
In this section we present some technical lemmas that will be useful later and some basic
facts in complex analysis. First, we recall that if z = a+ iy, a > 0 and w ∈ C, we have that

z−w = |z|−Re(w)−iIm(w) exp
(
(−iRe (w) + Im (w)) arctan

( y
a

))

and so

∣
∣z−w∣

∣ = |z|−Re(w) exp
(
Im (w) arctan

( y
a

))
. (12)

We also recall the Stirling formula

∣
∣� (x + iy)

∣
∣ ∼ √

2πe−π|y|/2 ∣
∣y

∣
∣x−1/2 (13)

which holds uniformly for x ∈ [x1, x2], x1, x2 fixed and
∣
∣y

∣
∣ → +∞ (see, e.g., [26], section

4.42).
Now we introduce the “explicit formula” of S̃r (z) , r ∈ N

+.
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Lemma 2 (Lemma 1 of [23]) Let r ≥ 1 be an integer, let z = a + iy, a > 0, y ∈ R. Let

T (z, r) := �
( 1
r
)

rz1/r
− 1

r
∑

ρ

z−ρ/r�
(ρ

r

)
. (14)

Then

S̃r (z) = T (z, r) + E (a, y, r) . (15)

where

∣
∣E (a, y, r)

∣
∣ �r 1 + |z|1/2

⎧
⎨

⎩

1,
∣
∣y

∣
∣ ≤ a

1 + log2
( |y|

a

)
,

∣
∣y

∣
∣ > a.

(16)

Note that in Lemma 1 of [23] T (z, r) is defined as

T (z, r) := �
( 1
r
)

rz1/r
− 1

r
∑

ρ

z−ρ/r�
(ρ

r

)
− log (2π )

but in our context, to make the main term combinatorically more tractable, it is better to
insert log (2π ) in the error term E (a, y, r). Furthermore, from (9) and (16) we immediately
get the important estimate

∣
∣
∣
∣
∣

∑

ρ

z−ρ/r�
(ρ

r

)
∣
∣
∣
∣
∣
�r a−1/r + 1 + |z|1/2

⎧
⎨

⎩

1,
∣
∣y

∣
∣ ≤ a

1 + log2
( |y|

a

)
,

∣
∣y

∣
∣ > a

(17)

which can be rewritten, if 0 < a < 1 and r ≥ 1, in the more compact form
∣
∣
∣
∣
∣

∑

ρ

z−ρ/r�
(ρ

r

)
∣
∣
∣
∣
∣
�r

⎧
⎨

⎩

a−1/r ,
∣
∣y

∣
∣ ≤ a

a−1/r + |z|1/2 log2
(
2|y|
a

)
,

∣
∣y

∣
∣ > a.

(18)

The following two technical lemmas highlight the constraints that are necessary for
convergence of the series and integrals and that will subsequently be reflected in the
constraint regarding the parameter k .

Lemma 3 Let λ ∈ N
+, r1, . . . , rλ ∈ N

+ and r := (r1, . . . , rλ) ∈ (
N

+)λ. Let ρj = βj+iγj , j ∈
{1, . . . , λ}, run over the non trivial zeros of Riemann zeta functionandα > 1beaparameter.
Then, for any fixed b > 1 and c ≥ 0, the series

∑

ρ1: γ1>0

(
γ1
r1

)β1/r1−1/2
· · ·

∑

ρλ: γλ>0

(
γλ

rλ

)βλ/rλ−1/2

×
∫ +∞

1
logc (bu) exp

(

− arctan
(
1
u

)

τ (γ , r , Jλ)
)

du
uα+τ (β,r,Jλ)

converges if α > λ
2 + 1.

Proof Following the proof of Lemma 2 of [23], we can see that
∫ +∞

1
exp

(

− arctan
(
1
u

)

τ (γ , r, Jλ)
)

du
uα+τ (β,r,Jλ)

�α,r τ (γ , r, Jλ)1−α−τ (β,r,Jλ)
∫ +∞

0
e−wwα+τ (β,r,Jλ)−2 dw
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and the integral converges since 0 < βj < 1, j = 1, . . . , λ and α > 1. Hence, we have to
consider

∑

ρ1: γ1>0
· · ·

∑

ρλ: γλ>0

(
γ1
r1

)β1/r1−1/2 · · ·
(

γλ

rλ

)βλ/rλ−1/2

τ (γ , r, Jλ)α+τ (β,r,Jλ)−1 .

Now, it is not difficult to note that
(

γ1
r1

)β1/r1 · · ·
(

γλ

rλ

)βλ/rλ

τ (γ , r, Jλ)τ (β,r,Jλ)
≤ 1 (19)

so we analyze

∑

ρ1: γ1>0
· · ·

∑

ρλ: γλ>0

(
γ1
r1

)−1/2 · · ·
(

γλ

rλ

)−1/2

τ (γ , r , Jλ)α−1

≤
∑

ρ1: γ1>0

(
γ1
r1

)− 1
2− α−1

λ · · ·
∑

ρλ: γλ>0

(
γλ

rλ

)− 1
2− α−1

λ

by the inequality of arithmetic and geometric means. From the asymptotic formula of
N (T ), where N (T ) is the number of non-trivial zeros of the Riemann zeta function with
imaginary part 0 ≤ γ ≤ T , it is not difficult to prove, putting γ (k) the imaginary part of
the k-th non-trivial zeros of ζ (s), that

γ (k) ∼ 2πk
log (k)

as k → +∞. So the series converges if α > λ
2 + 1. The treatment is similar for the case

c > 0. 
�
Lemma 4 Let N, λ,α be positive integers, let h ∈ Q

+, let ρj = βj + iγj , j ∈ {1, . . . , λ},
run over the non-trivial zeros of the Riemann zeta function, ‖·‖ the Euclidean norm in
R
d, d ∈ N

+ and k > 0 a real number. For sake of simplicity we define δ := ∑λ
j=1 γj . Then,

for every fixed integer b > 1 and c > 0,

∑

ρ1: γ1>0
· · ·

∑

ρλ: γλ>0

γ
− 1

2
1 · · · γ − 1

2
λ

δk+h+α

∑

f ∈(N+)α

×
∫ δ

0
vk−1+h+α+τ (β,r,Jλ)e−‖f ‖2Nv2/δ2−v log2c

(
b δ

v

)

dv

converges if k > λ
2 − h.

Proof We consider the integral

∑

ρ1: γ1>0
· · ·

∑

ρλ: γλ>0

γ
− 1

2
1 · · · γ − 1

2
λ

δk+h+α

∑

f ∈(N+)α

×
∫ δ

0
vk−1+h+α+τ (β,r,Jλ)e−‖f ‖2Nv2δ−2

exp (−v) dv. (20)

Now we claim that we can exchange the integral with the multiple series
∑

f ∈(N+)α . To
show this we consider

∫ δ

0
vk−1+h+α+τ (β,r,Jλ)

∑

f1≥1
e−f1Nv2δ−2

ωα−1
2 (Nv2δ−2) exp (−v) dv.
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Now, since for everyM ≥ 1 we have
∑

f1≤M
e−f1Nv2δ−2 ≤

∑

f1≥1
e−f1Nv2δ−2 = ω2(Nv2δ−2) �N

δ

v

from (10) and so we have to deal with
∫ δ

0
vk−2+h+α+τ (β,r,Jλ)ωα−1

2 (Nv2δ−2) exp (−v) dv

�N,α δα−1
∫ δ

0
vk+h−1+τ (β,r,Jλ) exp (−v) dv

which is convergent since k > 0, then we obtain
∑

f1≥1

∫ δ

0
vk−1+h+α+ β1

r1
+···+ βλ

rλ e−f1Nv2δ−2
ωα−1
2 (Nv2δ−2) exp (−v) dv

by the Dominated Convergence Theorem. Clearly, we can repeat the same argument for
every factor in the product ωα−1

2 (Nv2δ−2) and so we can write (20) as

∑

ρ1: γ1>0
· · ·

∑

ρλ: γλ>0

γ
− 1

2
1 · · · γ − 1

2
λ

δk+h+α

∫ δ

0
vk−1+h+α+τ (β,r,Jλ)ωα

2 (Nv
2δ−2) exp(−v) dv

and again using (10) we have to deal with

∑

ρ1: γ1>0
· · ·

∑

ρλ: γλ>0

γ
− 1

2
1 · · · γ − 1

2
λ

δk+h+α

∫ δ

0
vk−1+h+τ (β,r,Jλ) exp (−v) dv.

Now, since k + h + τ (β, r, Jλ) > 0, then
∫ δ

0
vk−1+h+τ (β,r,Jλ) exp (−v) dv �

∫ +∞

0
vk−1+h+τ (β,r,Jλ) exp (−v) dv < +∞.

Then, from arithmetic mean - geometric mean inequality, we get

∑

ρ1: γ1>0
· · ·

∑

ρλ: γλ>0

γ
− 1

2
1 · · · γ − 1

2
λ

δk+h+α
�

∑

ρ1: γ1>0
γ

− k
λ
− 1

2− h
λ

1 · · ·
∑

ρλ: γλ>0
γ

− k
λ
− 1

2− h
λ

λ (21)

and the series converges if k > λ
2 − h. Clearly, if we have a log factor into the integral the

bound for k is the same. Indeed, we note that

log2c
(

b
δ

v

)

� log2c(δ) + log2c (bv)

and

log2c(δ) ≤ log2c
(

λ max
γj , j=1,...,λ

γj

)

:= log2c (λγ�)

so we have in (21) one series such that
∑

ρ�: γ�>0
γ

− k
λ
− 1

2− h
λ

� log2c (λγ�)

and clearly the log factor does not affect the bound for k ; if we have
∫ +∞

0
vk−1+h+τ (β,r,Jλ) exp (−v) log2c (bv) dv

again, we have the same bounds for k and so the Lemma is proved. 
�



M. Cantarini et al. Res. Number Theory (2022) 8:50 Page 11 of 22 50

6 Proof of themain theorem
In this section we prove themain theorem.We first show that the error bound in themain
formula is “small”, then we prove that all the exchange of symbols is justified and finally
we evaluate the integrals.

6.1 Error term

From (14), (15) and following the subdivision in [9], formula (2), we can write

S̃r1 (z) · · · S̃rd (z) = T (z, r1) · · ·T (z, rd) +
d∑

j=1
E

(
a, y, rj

)

⎛

⎝
∏

i �=j
S̃ri (z)

⎞

⎠

+
∑

I⊆D
|I |≥2

cd (I)

⎛

⎝
∏

i∈D\I
T (z, ri)

⎞

⎠

(
∏


∈I
E (a, y, r
)

)

for some suitable coefficients cd (I). We multiply by ωh
2 and integrate, getting

1
2π i

∫

(a)
eNzz−k−1S̃r1 (z) · · · S̃rd (z)ω2 (z)h dz

= 1
2π i

∫

(a)
eNzz−k−1T (z, r1) · · ·T (z, rd)ω2 (z)h dz

+ 1
2π i

d∑

j=1

∫

(a)
eNzz−k−1E

(
a, y, rj

)

⎛

⎝
∏

i �=j
S̃ri (z)

⎞

⎠ω2 (z)h dz

+
∑

I⊆D
|I |≥2

cd (I)
∫

(a)
eNzz−k−1

⎛

⎝
∏

i∈D\I
T (z, ri)

⎞

⎠

(
∏


∈I
E (a, y, r
)

)

ω2 (z)h dz

=: A1 + A2 + A3,

say. Now we have to estimate the error term. From (9), (10) and (16) we obtain

|A2| �
d∑

j=1

∫

(a)

∣
∣
∣eNz

∣
∣
∣

∣
∣
∣z−k−1

∣
∣
∣
∣
∣E

(
a, y, rj

)∣
∣
∏

i �=j

∣
∣̃Sri (z)

∣
∣
∣
∣
∣ω2 (z)h

∣
∣
∣ dy

�r,d,h eNaa−h/2
d∑

j=1
a

−τ (r,D)+ 1
rj

×
(∫ a

0
a−k−1 (

1 + a1/2
)
dy +

∫ +∞

a
y−k−1

(
1 + y1/2

(
1 + log2

( y
a

)))
dy

)

�r,d,h eNaa−k−h/2
d∑

j=1
a

−τ (r,D)+ 1
rj (22)

for k > 0.
For the estimation of A3 we fix I ⊆ D and we consider

|A3.I | :=
∫

(a)

∣
∣
∣eNz

∣
∣
∣

∣
∣
∣z−k−1

∣
∣
∣

∏

i∈D\I
|T (z, ri)|

∏


∈I

∣
∣E (a, y, r
)

∣
∣
∣
∣
∣ω2 (z)h

∣
∣
∣ dy.

We know from (9) and (15) that

|T (z, r)| �r a−1/r + ∣
∣E (a, y, r)

∣
∣
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hence, using formula (10) it is enough to work with

a−h/2
∫

(a)

∣
∣
∣eNz

∣
∣
∣

∣
∣
∣z−k−1

∣
∣
∣

∏

i∈D\I

(
a−1/ri + ∣

∣E (a, y, ri)
∣
∣
) ∏


∈I

∣
∣E (a, y, r
)

∣
∣ dy.

Now, observing that
∏

i∈D\I

(
a−1/ri + ∣

∣E (a, y, ri)
∣
∣
) =

∑

J⊆D\I
a−τ (r,J) ∏

i∈D\(I∪J)

∣
∣E (a, y, ri)

∣
∣

we have by (16),

|A3.I | �r,d,h eNaa−h/2
∑

J⊆D\I

∫

(a)
a−τ (r,J) ∏

i∈D\(I∪J)

∣
∣E (a, y, ri)

∣
∣
∏


∈I

∣
∣E (a, y, r
)

∣
∣
∣
∣
∣z−k−1

∣
∣
∣ dy

�r,d,h eNaa−h/2
∑

J⊆D\I
a−τ (r,J)

∫ a

0
a−k−1 (

1 + a1/2
)|D\J| dy

+ eNaa−h/2
∑

J⊆D\I
a−τ (r,J)

∫ +∞

a
y−k−1

(
1 + y1/2

(
1 + log2

( y
a

)))|D\J|
dy

�r,d,h eNaa−k−h/2
∑

J⊆D\I
a−τ (r,J)

for k >
|D\J|

2 and since this inequality must holds for all subsets J ⊆ D, we have to
assume k > d

2 . Hence

|A3| �r,d,h eNaa−k−h/2
∑

I⊆D
|I |≥2

∑

J⊆D\I
a−τ (r,J).

Now we take a = 1/N and we observe that
∑

I⊆D
|I |≥2

∑

J⊆D\I
N τ (r,J) �d max

I⊆D
|I |≥2

max
J⊆D\I N

τ (r,J) �d N
τ (r,D)− 1

rj1
− 1

rj2 �d Nk+h/2+τ (r,D)−1/rd

remembering that 1 ≤ r1 ≤ r2 ≤ . . . ≤ rd . This error term is compatible with that of
Theorem 1.

6.2 Evaluation of the main term

According to (14) we rewrite A1 in the following form

A1 = 1
2π i

∫

(1/N )
eNzz−k−1T (z, r1) · · ·T (z, rd)ω2 (z)h dz

= 1
2π i

1
r �

(
1
r

) ∫

(1/N )
eNzz−k−1−τ (r,D)ω2 (z)h dz

+ (−1)d

2π i

∫

(1/N )
eNzz−k−1

⎛

⎝
∑

ρ∈Zd

1
r �

(ρ

r
)
z−τ (ρ,r,D)

⎞

⎠ ω2 (z)h dz

+ 1
2π i

∑

I⊆D
|I |≥1

(−1)|D\I |
∫

(1/N )
eNzz−k−1−τ (r,I)

⎛

⎝
∑

ρ∈Z|D\I |

1
r �

(ρ

r
)
z−τ (ρ,r,D\I)

⎞

⎠ ω2 (z)h dz

=: I1 + I2 + I3.

I1 corresponds to the termsM1 andM2 of Theorem 1, I2 corresponds to the termsM3
andM4 and finally I3 corresponds toM5.
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6.2.1 Evaluation of I1
We study I1. By (4) and the binomial theorem, we get

ω2 (z)h =
(
1
2

(π

z

)1/2 − 1
2

+
(π

z

)1/2
ω2

(
π2

z

))h

=
h∑

η=0

(
h
η

)

2η

((π

z

)1/2 − 1
)η

ω2

(
π2

z

)h−η (π

z

) h−η
2

=
h∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(−1)η−

(π

z

) h−η+

2

ω2

(
π2

z

)h−η

and so

I1 = 1
2π i

1
r �

(
1
r

) ∫

(1/N )
eNzz−k−1−τ (r,D)ω2 (z)h dz

= 1
2π i

h∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

π
h−η+


2 (−1)η−
 1
r �

(
1
r

)

×
∫

(1/N )
eNzz−k−1−τ (r,D)− h−η+


2 ω2

(
π2

z

)h−η

dz.

Our main goal is to show that, for a suitable k , we can exchange the integral with the
involved series; in this case, with the series related to ω2. We consider two cases: if η = h
we get

I1,1 := 1
2h+1π i

h∑


=0

(
h



)

π


2 (−1)h−
 1

r �

(
1
r

) ∫

(1/N )
eNzz−k−1−τ (r,D)− 


2 dz

which corresponds to the termM1 in Theorem 1 and, from the substitution Nz = u and
(1), we get

I1,1 = 1
2h+1π i

h∑


=0

(
h



)

π


2 (−1)h−
 Nk+τ (r,d)+ 


2
1
r �

(
1
r

) ∫

(1)
euu−k−1−τ (r,D)− 


2 du

= 1
2h

h∑


=0

(
h



)
π



2 (−1)h−
 Nk+τ (r,D)+ 


2

�
(
k + 1 + τ (r,D) + 


2
)
1
r �

(
1
r

)

for k + 1 + τ (r,D) + 

2 > 0, which is trivially true if k > 0. Now, fix 1 ≤ λ ≤ h − η.

We consider the general case

I1,2,λ :=
∑

f1≥1
· · ·

∑

fλ≥1

∫

(1/N )

∣
∣
∣eNz

∣
∣
∣ |z|−k−1−τ (r,D)− h−η+


2 e−π2Re(1/z)(f 21 +···+f 2λ )

×
∣
∣
∣
∣ω2

(
π2

z

)∣
∣
∣
∣

h−η−λ

| dz| . (23)

Note that if I1,2,λ converges for all λ, the exchange between series and integral is justified.
By the trivial estimate

Re
(
1
z

)

= N
1 + y2N 2 �

⎧
⎨

⎩

N,
∣
∣y

∣
∣ ≤ 1/N

1/
(
Ny2

)
,

∣
∣y

∣
∣ > 1/N,
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by (11) and by (10), we obtain

I1,2,λ �h,η,λ
∑

f ∈(N+)λ

∫ 1/N

0
Nk+1+τ (r,D)+ λ+


2 e−π2N
(‖f ‖2

)

dy

+ Nh−η−λ
∑

f ∈(N+)λ

∫ +∞

1/N
y−k−1−τ (r,D)+ h−η−


2 −λe
− π2(‖f ‖2)

Ny2 dy.

The first integral and the series trivially converge sinceN is positive, then we can consider

only the second integral. Making the substitution v = π2
(‖f ‖2

)

Ny2 , we get

∑

f ∈(N+)λ

∫ +∞

1/N
y−k−1−τ (r,D)+ h−η−


2 −λe
− π2(‖f ‖2)

Ny2 dy

�N,h,η,λ
∑

f ∈(N+)λ

∥
∥f

∥
∥−

(
k+τ (r,D)− h−η−


2 +λ
) ∫ +∞

0
v
1
2

(
k+τ (r,D)− h−η−


2 +λ−1
)
−1e−v dv.

Now, the integral is convergent if k + τ (r,D) − h−η−

2 + λ − 1 > 0, which means

k > −τ (r,D)+ h−η−

2 −λ+1 and the series is convergent if k+τ (r,D)− h−η−


2 +λ > λ,
from the inequality of arithmetic and geometric means, and so k > −τ (r,D) + h−η−


2 .
Since the inequalities must holds for all 1 ≤ λ ≤ h − η, for all 0 ≤ 
 ≤ η and for all
0 ≤ η ≤ h − 1, we can conclude that we can exchange all the series with the integral if
k > −τ (r,D) + h

2 . Hence, using (7) we can finally write

I1,2 = 1
2π i

h−1∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

π
h−η+


2 (−1)η−
 1
r �

(
1
r

)

×
∑

f ∈(N+)h−η

∫

(1/N )
eNzz−k−1−τ (r,D)− h−η+


2 e−
π2‖f ‖2

z dz

= Nk+τ (r,D)

2π i

h−1∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(Nπ )
h−η+


2 (−1)η−
 1
r �

(
1
r

)

×
∑

f ∈(N+)h−η

∫

(1)
euu−k−1−τ (r,D)− h−η+


2 e−
π2‖f ‖2N

u du

= N
k+τ (r ,D)

2

πk+τ (r,D)

h−1∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

N
h−η+


4 (−1)η−
 1
r �

(
1
r

)

×
∑

f ∈(N+)h−η

Jk+τ (r,D)+ h−η+

2

(
2π

√
N

∥
∥f

∥
∥
)

∥
∥f

∥
∥k+τ (r,D)+ h−η+


2

for k > −τ (r,D) + h
2 . This term corresponds toM2 in Theorem 1.
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6.2.2 Evaluation of I2
As in the previous case, we split the integral into two pieces

I2 = (−1)d

2π i

∫

(1/N )
eNzz−k−1

⎛

⎝
∑

ρ∈Zd

1
r �

(ρ

r
)
z−τ (ρ,r,D)

⎞

⎠ω2 (z)h dz

= (−1)d

2π i

h∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

π
h−η+


2 (−1)η−


∫

(1/N )
eNzz−k−1− h−η+


2

×
⎛

⎝
∑

ρ∈Zd

1
r �

(ρ

r
)
z−τ (ρ,r,D)

⎞

⎠ ω2

(
π2

z

)h−η

dz

= (−1)d

2h+1π i

h∑


=0

(
h



)

π


2 (−1)h−


∫

(1/N )
eNzz−k−1− 


2

⎛

⎝
∑

ρ∈Zd

1
r �

(ρ

r
)
z−τ (ρ,r,D)

⎞

⎠ dz

+ (−1)d

2π i

h−1∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

π
h−η+


2 (−1)η−


∫

(1/N )
eNzz−k−1− h−η+


2

×
⎛

⎝
∑

ρ∈Zd

1
r �

(ρ

r
)
z−τ (ρ,r,D)

⎞

⎠ ω2

(
π2

z

)h−η

dz

=: I2,1 + I2,2.

Let us consider I2,1 which corresponds toM3 in Theorem 1. We want to show that it is
possible to exchange the integral with the product of the series involving the non-trivial
zeros if the Riemann zeta function. To prove this, we fix an arbitrary 1 ≤ λ ≤ d and we
analyze

∑

ρ1

∣
∣
∣�

(
ρ1
r1

)∣
∣
∣

r1
· · ·

∑

ρλ

∣
∣
∣�

(
ρλ

rλ

)∣
∣
∣

rλ

∫

(1/N )

∣
∣
∣eNz

∣
∣
∣ |z|−k−1− 


2
∣
∣
∣z−τ (ρ,r ,Jλ)

∣
∣
∣

d∏

s=λ+1

∣
∣
∣
∣
∣
∣

∑

ρs

�
(

ρs
rs

)

rs
z− ρs

rs

∣
∣
∣
∣
∣
∣
| dz|

with the convention that, if λ = d, then
∏d

s=λ+1

∣
∣
∣
∣
∣

∑
ρs

�
(

ρs
rs

)

rs z− ρs
rs

∣
∣
∣
∣
∣

= 1. From Stirling

formula (13) and (17) we have that it is enough to study the convergence of

∑

ρ1

|γ1|
β1
r1

− 1
2 · · ·

∑

ρλ

|γλ|
βλ
rλ

− 1
2

∫

R

|z|−k−1− 

2−τ (β,r,Jλ)

× exp

⎛

⎝
λ∑

j=1

(
γj

rj
arctan (Ny) − π

∣
∣γj

∣
∣

2rj

)⎞

⎠
d∏

s=λ+1

∣
∣
∣
∣
∣
∣

∑

ρs

�
(

ρs
rs

)

rs
z− ρs

rs

∣
∣
∣
∣
∣
∣
dy.

We split the integral in
∣
∣y

∣
∣ ≤ 1/N and

∣
∣y

∣
∣ > 1/N . Assume that

∣
∣y

∣
∣ ≤ 1/N , then, by (17),

we have



50 Page 16 of 22 M. Cantarini et al. Res. Number Theory (2022) 8:50

∑

ρ1

|γ1|
β1
r1

− 1
2 · · ·

∑

ρλ

|γλ|
βλ
rλ

− 1
2

∫ 1/N

−1/N
|z|−k−1− 


2 |z|−τ (β,r,Jλ)

× exp

⎛

⎝
λ∑

j=1

(
γj

rj
arctan (Ny) − π

∣
∣γj

∣
∣

2rj

)⎞

⎠Nd−λ dy

�N,λ,d
∑

ρ1

|γ1|
β1
r1

− 1
2 exp

(

−π |γ1|
4r1

)

· · ·
∑

ρλ

|γλ|
βλ
rλ

− 1
2 exp

(

−π |γλ|
4rλ

)

and the series trivially converges, so assume that
∣
∣y

∣
∣ > 1/N. It is enough considering the

case
∑

ρ1

|γ1|
β1
r1

− 1
2 · · ·

∑

ρλ

|γλ|
βλ
rλ

− 1
2

∫

|y|>1/N
|z|−k−1− 


2−τ (β,r,Jλ)+ α
2

× exp

⎛

⎝
λ∑

j=1

(
γj

rj
arctan (Ny) − π

∣
∣γj

∣
∣

2rj

)⎞

⎠ log2α
(
2N

∣
∣y

∣
∣
)
dy

for 1 ≤ α ≤ d − λ, since the powers of N do not affect the study of the convergence and
so can be omitted. Assume y > 1/N and γj > 0, j = 1, . . . , λ. Putting Ny = u and using
the well-known identity arctan(x) − π

2 = − arctan
( 1
x
)
we get

∑

ρ1: γ1>0
γ

β1
r1

− 1
2

1 · · ·
∑

ρλ: γλ>0
γ

βλ
rλ

− 1
2

λ

∫ +∞

1
u−k−1− 


2−τ (β,r,Jλ)+ α
2

× exp
(

− arctan
(
1
u

)

τ (γ , r, Jλ)
)

log2α (2u) du

and, by Lemma 3, we have the convergence if k > λ+α−

2 , and since this inequality must

hold for all 0 ≤ 
 ≤ d and all 1 ≤ α ≤ d − λ we can conclude that k > d
2 . Now, fix

1 ≤ η ≤ λ and assume that γ1, . . . , γη > 0 and γη+1, . . . , γλ < 0. In this case, recalling
that y > 1/N and so γj

rj arctan (Ny) − π|γj|
2rj ≤ −π|γj|

2rj for j > η, we have to work with

∑

ρ1: γ1>0
γ

β1
r1

− 1
2

1 · · ·
∑

ρη : γη>0
γ

βη
rη − 1

2
η

∑

ρη+1: γη+1<0

∣
∣γη+1

∣
∣

βη+1
rη+1

− 1
2

× exp
(

−π
∣
∣γη+1

∣
∣

2rη+1

)

· · ·
∑

ρλ : γλ<0
|γλ|

βλ
rλ

− 1
2 exp

(

−π |γλ|
2rλ

)

×
∫

y>1/N
y−k−1− 


2−τ (β,r,Jλ)+ α
2 exp

⎛

⎝
η∑

j=1

(
γj

rj
arctan (Ny) − πγj

2rj

)
⎞

⎠ log2α (2Ny) dy

with 1 ≤ α ≤ d − λ. Letting Ny = u, we note that we have to deal with

∑

ρ1: γ1>0
γ

β1
r1

− 1
2

1 · · ·
∑

ρη : γη>0
γ

βη
rη − 1

2
η

∑

ρη+1: γη+1<0

∣
∣γη+1

∣
∣

βη+1
rη+1

− 1
2

× exp
(

−π
∣
∣γη+1

∣
∣

2rη+1

)

· · ·
∑

ρλ: γλ<0
|γλ|

βλ
rλ

− 1
2 exp

(

−π |γλ|
2rλ

)

×
∫ +∞

1
u−k−1− 


2−τ (β,r,Jλ)+ α
2 exp

(

− arctan
(
1
u

)

τ
(
γ , r , Jη

)
)

log2α (2u) du
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(also in this case we omit the powers of N because they do not affect the convergence)
and, since

(
1
u

) βj
rj

< 1, u > 1, j = 1, . . . , λ,

it is enough to consider

∑

ρ1: γ1>0
γ

β1
r1

− 1
2

1 · · ·
∑

ρη : γη>0
γ

βη
rη − 1

2
η

∫ +∞

1
u−k−1− 


2−τ(β,r,Jη)+ α
2

× exp
(

− arctan
(
1
u

)

τ
(
γ , r , Jη

)
)

log2α (2u) du

and so, arguing as in the previous case, the convergence if k >
η+d−λ

2 and so, since η ≤ λ,
a complete convergence in the case k > d

2 . If y < −1/N we get the same bounds for k , by
symmetry.
Now, since |D| = d, we have

I2,1 = (−1)d

2h+1π i

h∑


=0

(
h



)

π


2 (−1)h−


∑

ρ∈Zd

1
r �

(ρ

r
) ∫

(1/N )
eNzz−k−1− 


2−τ (ρ,r,D) dz

= Nk (−1)d

2h

h∑


=0

(
h



)

(Nπ )


2 (−1)h−


∑

ρ∈Zd

1
r �

(ρ

r
) N τ (ρ,r,D)

�
(
k + 1 + 


2 + τ (ρ, r,D)
) ,

from (1).
Now, we analyze I2,2 (which corresponds to M4 in Theorem 1) and we prove that we

can switch the integral with the series involving the non-trivial zeros of the Riemann zeta
function and with the powers of ω2

(
π2

z

)
. As the previous calculations, we fix 1 ≤ λ ≤ d

and 1 ≤ α ≤ h − η. So we have to consider

∑

ρ1

∣
∣
∣�

(
ρ1
r1

)∣
∣
∣

r1
· · ·

∑

ρλ

∣
∣
∣�

(
ρλ

rλ

)∣
∣
∣

rλ

∑

f ∈(N+)α

∫

(1/N )

∣
∣
∣eNz

∣
∣
∣ e−Re

(
π2
z

)‖f ‖2
|z|−k−1− h−η+


2
∣
∣
∣z−τ (ρ,r,Jλ)

∣
∣
∣

×
d∏

s=λ+1

∣
∣
∣
∣
∣
∣

∑

ρs

�
(

ρs
rs

)

rs
z− ρs

rs

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣ω2

(
π2

z

)∣
∣
∣
∣

h−η−α

| dz|

again with the convention
∏d

s=λ+1

∣
∣
∣
∣
∣

∑
ρs

�
(

ρs
rs

)

rs z− ρs
rs

∣
∣
∣
∣
∣
= 1 if λ = d. From (13) and recalling

that the powers ofN do not affect the convergence, it is enough to study the convergence
of

∑

ρ1

|γ1|
β1
r1

− 1
2 · · ·

∑

ρλ

|γλ|
βλ
rλ

− 1
2

∑

f ∈(N+)α

∫

R

|z|−k−1− h−η+

2 |z|−τ (β,r ,Jλ) e

− ‖f ‖2N
1+N2y2

× exp

⎛

⎝
λ∑

j=1

(
γj

rj
arctan (Ny) − π

∣
∣γj

∣
∣

2rj

)⎞

⎠
d∏

s=λ+1

∣
∣
∣
∣
∣
∣

∑

ρs

�
(

ρs
rs

)

rs
z− ρs

rs

∣
∣
∣
∣
∣
∣

(
1 + y2N 2

N

) h−η−α
2

dy.
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If
∣
∣y

∣
∣ ≤ 1/N we have

∑

ρ1

|γ1|
β1
r1

− 1
2 · · ·

∑

ρλ

|γλ|
βλ
rλ

− 1
2

∑

f ∈(N+)α

∫ 1/N

−1/N
|z|−k−1− h−η+


2 |z|−τ (β,r,Jλ) e
− ‖f ‖2N

1+N2y2

× exp

⎛

⎝
λ∑

j=1

(
γj

rj
arctan (Ny) − π

∣
∣γj

∣
∣

2rj

)⎞

⎠
d∏

s=λ+1

∣
∣
∣
∣
∣
∣

∑

ρs

�
(

ρs
rs

)

rs
z− ρs

rs

∣
∣
∣
∣
∣
∣

(
1 + y2N 2

N

) h−η−α
2

dy

�N,k,α,h,η,
,r
∑

ρ1

|γ1|
β1
r1

− 1
2 exp

(

−π |γ1|
4r1

)

· · ·
∑

ρλ

|γλ|
βλ
rλ

− 1
2 exp

(

−π |γ1|
4r1

) ∑

f ∈(N+)α
e−‖f ‖2N

and trivially the convergence, so we consider now
∣
∣y

∣
∣ > 1/N . If we fix 1 ≤ μ ≤ d − λ,

from (17), it is enough to work with

∑

ρ1

|γ1|
β1
r1

− 1
2 · · ·

∑

ρλ

|γλ|
βλ
rλ

− 1
2

∑

f ∈(N+)α

∫

|y|>1/N
|z|−k−1− h−η+


2 + μ
2 |z|−τ (β,r,Jλ) e

−‖f ‖2
Ny2

× exp

⎛

⎝
λ∑

j=1

(
γj

rj
arctan (Ny) − π

∣
∣γj

∣
∣

2rj

)⎞

⎠ log2μ
(
2N

∣
∣y

∣
∣
) ∣
∣y

∣
∣h−η−α dy.

Assume y > 1/N and γj > 0, j = 1, . . . , λ. Since arctan
(

1
Ny

)
� 1

Ny , We have

∑

ρ1: γ1>0
γ

β1
r1

− 1
2

1 · · ·
∑

ρλ: γλ>0
γ

βλ
rλ

− 1
2

λ

∑

f ∈(N+)α

∫ +∞

1/N
y−k−1− h−η+


2 −τ (β,r,Jλ)+ μ
2 e

−‖f ‖2
Ny2

× exp
(

−τ (γ , r, Jλ)
Ny

)

log2μ (2Ny) yh−η−α dy.

Putting v =
∑λ

j=1
γj
rj

Ny , we obtain

∑
ρ1: γ1>0 γ

β1
r1

− 1
2

1 · · · ∑ρλ: γλ>0 γ

βλ
rλ

− 1
2

λ

(τ (γ , r, Jλ))k+ h−η+

2 +τ (β,r,Jλ)−h+η+α− μ

2

∑

f ∈(N+)α

∫ τ (γ ,r,Jλ)

0
vk−1+ h−η+


2 +τ (β,r,Jλ)− μ
2

× e
− ‖f ‖2Nv2

τ(β,r,Jγ )2 exp (−v) log2μ
(

2
τ (γ , r , Jλ)

v

)

v−h+η+α dv.

Now, from (19) and by elementary manipulations we can study

∑
ρ1: γ1>0 γ

− 1
2

1 · · · ∑ρλ: γλ>0 γ
− 1

2
λ

(τ (γ , r , Jλ))k− h−η
2 + 


2+α− μ
2

∑

f ∈(N+)α

∫ τ (γ ,r,Jλ)

0
vk−1− h−η

2 + 

2+τ (β,r,Jλ)+α− μ

2

× e
− ‖f ‖2Nv2

τ(γ ,r ,Jλ)2 exp (−v) log2ν
(

2
τ (γ , r , Jλ)

v

)

dv

and so, by Lemma 4, we have the convergence if k > λ
2 + h−η−
+μ

2 . Since μ ≤ d − λ and
0 ≤ 
 ≤ η we have the complete convergence for all possible cases if k > d+h

2 .
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Now fix 1 ≤ ξ ≤ λ and assume that γ1, . . . , γξ > 0 and γξ+1, . . . , γλ < 0. In this case,
recalling that y > 1/N,we have to work with

∑

ρ1: γ1>0
γ

β1
r1

− 1
2

1 · · ·
∑

ρξ : γξ >0
γ

βξ
rξ

− 1
2

ξ

∑

ρξ+1: γξ+1<0

∣
∣γξ+1

∣
∣

βξ+1
rξ+1

− 1
2 · · ·

∑

ρλ: γλ<0
|γλ|

βλ
rλ

− 1
2

×
∑

m∈(N+)α

∫ +∞

1/N
y−k−1− h−η+


2 −τ (β,r,Jλ)+ μ
2 e

− ‖m‖2
Ny2

× exp

⎛

⎝
λ∑

j=1

(
γj

rj
arctan (Ny) − π

∣
∣γj

∣
∣

2rj

)⎞

⎠ log2μ (2Ny) yh−η−α dy.

Now, since y > 1/N , if γj < 0, we observe that γj
rj arctan (Ny) − π|γj|

2rj ≤ −π|γj|
2rj , y−βj/rj ≤

Nβj/rj ≤ N 1/rj and

∑

ρj : γj<0

∣
∣γj

∣
∣

βj
rj

− 1
2 exp

(

−π
∣
∣γj

∣
∣

2rj

)

trivially converges, so it is enough to consider

∑

ρ1: γ1>0
γ

β1
r1

− 1
2

1 · · ·
∑

ρξ : γξ >0
γ

βξ
rξ

− 1
2

ξ

∑

f ∈(N+)α

∫ +∞

1/N
y−k−1− h−η+


2 −τ(β,r,Jξ )+ μ
2 e

−‖f ‖2
Ny2

× exp

⎛

⎝
ξ∑

j=1

(
γj

rj
arctan (Ny) − πγj

2rj

)
⎞

⎠ log2μ (2Ny) yh−η−α dy

and so, following the previous case, we have the convergence if k >
h+d−λ+ξ

2 and since
ξ ≤ λ, we have the complete convergence if k > d+h

2 . If y < −1/N we have the same
bounds, by the symmetry of the non-trivial zeros of the Riemann zeta function, so we can
finally exchange the integral with the series and get

I2,2 = (−1)d

2π i

h−1∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

π
h−η+


2 (−1)η−

∑

ρ∈Zd

1
r �

(ρ

r
)

×
∑

f ∈(N+)h−η

∫

(1/N )
eNzz−k−1− h−η+


2 −τ (ρ,r,D)e−
π2‖f ‖2

z dz

which is, taking Nz = v,

(−1)d

2π i

h−1∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

π
h−η+


2 (−1)η−

∑

ρ∈Zd

1
r �

(ρ

r
)
Nk+ h−η+


2 +τ (ρ,r,D)×

×
∑

f ∈(N+)h−η

∫

(1)
z−k−1− h−η+


2 −τ (ρ,r,D)ev−
π2N‖f ‖

v dv
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= Nk/2 (−1)d

πk

h−1∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(−1)η−

∑

ρ∈Zd

1
r �

(ρ

r
) N

h−η+

4 +τ (ρ,r,D)/2

πτ (ρ,r,D) ×

×
∑

f ∈(N+)h−η

Jk+ h−η+

2 +τ (ρ,r,D)

(
2π

√
N

∥
∥f

∥
∥
)

∥
∥f

∥
∥k+ h−η+


2 +τ (ρ,r,D)
.

7 Evaluation of I3
In this section we evaluate

I3 = 1
2π i

∑

I⊆D
|I |≥1

(−1)|D\I |
∫

(1/N )
eNzz−k−1−τ (r,I)

⎛

⎝
∑

ρ∈Z|D\I |

1
r �

(ρ

r
)
z−τ (ρ,r,D\I)

⎞

⎠ ω2 (z)h dz

which corresponds toM5 in Theorem 1 and has a similar structure to I2. If we fix I ⊆ Dwe
can repeat the previous argument to justify the exchange the integral with the series only
considering k + τ (r, I) instead of k and |D \ I | instead of d = |D|. So, we can conclude
that all exchanges are justified if k >

|D\I |+h
2 − τ (r, I), and so we have

I3 = 1
2π i

∑

I⊆D
|I |≥1

(−1)|D\I |
h∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(−1)η−
 π
h−η+


2

×
∑

ρ∈Z|D\I |

1
r �

(ρ

r
) ∫

(1/N )
eNzz−k−1−τ (r,I)− h−η+


2 −τ (ρ,r,D)ω2

(
π2

z

)h−η

dz

= 1
2π i

∑

I⊆D
|I |≥1

(−1)|D\I |
h∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(−1)η−
 π
h−η+


2

×
∑

ρ∈Z|D\I |

1
r �

(ρ

r
) ∑

f ∈(N+)h−η

∫

(1/N )
eNzz−k−1−τ (r,I)− h−η+


2 −τ (ρ,r,D)e−
π2‖f ‖2

z dz

and so, taking Nz = v and using (7), we have that

I3 = Nk

2π i
∑

I⊆D
|I |≥1

N τ (r,I) (−1)|D\I |
h∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(−1)η−
 π
h−η+


2

×
∑

ρ∈Z|D\I |

1
r �

(ρ

r
)
N

h−η+

2 −τ (ρ,r,D\I)

×
∑

f ∈(N+)h−η

∫

(1)
evv−k−1−τ (r,I)− h−η+


2 −τ (ρ,r,D)e−
π2N‖f ‖2

v dv

= Nk/2

πk

∑

I⊆D
|I |≥1

N τ (r,I)/2 (−1)|D\I |
h∑

η=0

(
h
η

)

2η

η∑


=0

(
η




)

(−1)η−
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×
∑

ρ∈Z|D\I |

1
r �

(ρ

r
) N

h−η+

4 +τ (ρ,r,D\I)/2

πτ (ρ,r,D\I)

×
∑

f ∈(N+)h−η

Jk+τ (r,I)+ h−η+

2 +τ (ρ,r,D\I)

(
2π

√
N

∥
∥f

∥
∥
)

∥
∥f

∥
∥k+τ (r,I)+ h−η+


2 +τ (ρ,r,D\I)

and this completes the proof.
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118, pp. 137–152. Banach Center Publications, Warszawa (2019)

https://doi.org/10.2969/aspm/08410001
https://projecteuclid.org/euclid.aspm/1590597081
https://doi.org/10.1007/s11139-019-00237-x
https://doi.org/10.7169/facm/1856
http://arxiv.org/abs/1305.2897
http://arxiv.org/abs/1205.5252
http://arxiv.org/abs/1312.7748


50 Page 22 of 22 M. Cantarini et al. Res. Number Theory (2022) 8:50

24. Languasco, A., Zaccagnini, A.: A Cesàro average of generalised Hardy-Littlewood numbers. Kodai Math. J. 42(2),
358–375 (2019)

25. Pintz, J.: A new explicit formula in the additive theory of primes with applications, I. The explicit formula for the
Goldbach and Generalized Twin Prime problems. arXiv:1804.05561

26. Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford (1988)
27. Vinogradov, I.M.: Some theorems concerning the theory of primes. Mat. Sb. N. S. 2, 179–195 (1937)
28. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1966)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1804.05561

	A Cesàro average for an additive problem with an arbitrary number of prime powers and squares
	Abstract
	1 introduction
	2 Outline of the method
	3 Preliminary definitions and main theorem
	4 Settings
	5 Lemmas
	6 Proof of the main theorem
	6.1 Error term
	6.2 Evaluation of the main term
	6.2.1 Evaluation of I1
	6.2.2 Evaluation of I2


	7 Evaluation of I3
	References




