Microphone arrays of various sizes and shapes are currently employed in consumer electronics devices such as speakerphones, smart TVs, smartphones, and headphones. In this paper, a full-digital, planar microphone array is presented. It makes use of digital Micro Electro-Mechanical Systems (MEMS) microphones, connected through the Automotive Audio Bus (A2B). A clock propagation model for A2B networks, developed in a previous work, was employed to estimate the effects of jitter and delay on microphone arrays. It will be shown that A2B allows for a robust data transmission, while ensuring deterministic latency and channels synchronization, thus overcoming the signal integrity issues which usually affect MEMS capsules. The microphone positioning is also discussed since it greatly affects the spatial accuracy of beamforming. Numerical simulations were performed on four regular geometries to identify the optimal layout in terms of number of capsules and beamforming directivity. An A2B planar array with equilateral triangle geometry and four microphones, three in the vertices and one in the center, was built. Experimental measurements were performed, obtaining an excellent matching with numerical simulations. Finally, the concept of an array of arrays (meta-array) is presented, designed by combining several triangular units and analyzed through numerical simulations.

An Innovative Architecture of Full-digital Microphone Arrays Over A2B Network for Consumer Electronics / Pinardi, D.; Rocchi, N.; Toscani, A.; Binelli, M.; Chiorboli, G.; Farina, A.; Cattani, L.. - In: IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. - ISSN 0098-3063. - 68:3(2022), pp. 200-208. [10.1109/TCE.2022.3187453]

An Innovative Architecture of Full-digital Microphone Arrays Over A2B Network for Consumer Electronics

Pinardi D.;Rocchi N.
;
Toscani A.;Binelli M.;Chiorboli G.;Farina A.;
2022-01-01

Abstract

Microphone arrays of various sizes and shapes are currently employed in consumer electronics devices such as speakerphones, smart TVs, smartphones, and headphones. In this paper, a full-digital, planar microphone array is presented. It makes use of digital Micro Electro-Mechanical Systems (MEMS) microphones, connected through the Automotive Audio Bus (A2B). A clock propagation model for A2B networks, developed in a previous work, was employed to estimate the effects of jitter and delay on microphone arrays. It will be shown that A2B allows for a robust data transmission, while ensuring deterministic latency and channels synchronization, thus overcoming the signal integrity issues which usually affect MEMS capsules. The microphone positioning is also discussed since it greatly affects the spatial accuracy of beamforming. Numerical simulations were performed on four regular geometries to identify the optimal layout in terms of number of capsules and beamforming directivity. An A2B planar array with equilateral triangle geometry and four microphones, three in the vertices and one in the center, was built. Experimental measurements were performed, obtaining an excellent matching with numerical simulations. Finally, the concept of an array of arrays (meta-array) is presented, designed by combining several triangular units and analyzed through numerical simulations.
2022
An Innovative Architecture of Full-digital Microphone Arrays Over A2B Network for Consumer Electronics / Pinardi, D.; Rocchi, N.; Toscani, A.; Binelli, M.; Chiorboli, G.; Farina, A.; Cattani, L.. - In: IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. - ISSN 0098-3063. - 68:3(2022), pp. 200-208. [10.1109/TCE.2022.3187453]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2927271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 6
social impact