The quantification of the variability of the categorical data is an important topic not only in statistics, but also in many other disciplines. We suggest different variability measures to describe the variability of categorical data. In our approach, any set of categorical data for a determinate categorical variable is treated as a fuzzy set. Therefore, measuring the variability of categorical data is the same as measuring its fuzziness. Different measures of association between two categorical variables are also proposed. The measures can be easily applied to categoric random variables.

Measuring variability and association for categorical data / Allaj, E.. - In: FUZZY SETS AND SYSTEMS. - ISSN 0165-0114. - 421:(2021), pp. 29-43. [10.1016/j.fss.2020.11.018]

Measuring variability and association for categorical data

Allaj E.
2021-01-01

Abstract

The quantification of the variability of the categorical data is an important topic not only in statistics, but also in many other disciplines. We suggest different variability measures to describe the variability of categorical data. In our approach, any set of categorical data for a determinate categorical variable is treated as a fuzzy set. Therefore, measuring the variability of categorical data is the same as measuring its fuzziness. Different measures of association between two categorical variables are also proposed. The measures can be easily applied to categoric random variables.
2021
Measuring variability and association for categorical data / Allaj, E.. - In: FUZZY SETS AND SYSTEMS. - ISSN 0165-0114. - 421:(2021), pp. 29-43. [10.1016/j.fss.2020.11.018]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0165011420304620-main.pdf

solo utenti autorizzati

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 349.73 kB
Formato Adobe PDF
349.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
paperfuzzy.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 302.05 kB
Formato Adobe PDF
302.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2911574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact