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Abstract

The quantification of the variability of the categorical data is an important topic not only

in statistics, but also in many other disciplines. We suggest different variability measures

to describe the variability of categorical data. In our approach, any set of categorical data

for a determinate categorical variable is treated as a fuzzy set. Therefore, measuring the

variability of categorical data is the same as measuring its fuzziness. Different measures of

association between two categorical variables are also proposed. The measures can be easily

applied to categoric random variables.

Keywords: Variability measures; Association measures; Fuzzy sets; Relative frequencies; Cate-

gorical random variables

1 Introduction

Measuring the variability of a given variable in a dataset is an important issue in many scientific

fields. Of the same importance is the problem of determining the degree of association between

two determinate categorical variables. While there is a general consensus among scholars on

the measures for determining the variability and association between continuous variables, there

is no general consensus on the appropriate variability and association measures for categorical

data.

The main difficulty arises because of the particular nature of categorical data. [Agresti, 2012]

provides an excellent introduction to categorical data analysis and [Kader and Perry, 2007] to

the concept of variability of these data. Indeed, the majority of authors argue that arithmetic

operations are not possible with categorical data. These authors rely on the work of [Stevens,

1946] who asserts that arithmetic operations on these data are a nonsense. On the contrary,

other authors inspired from [Velleman and Wilkinson, 1993] believe that doing mathematical

operations with categorical data is senseful. In the paper, we will embrace the point of view of

the first group of authors.

Even though they are often known under the name diversity or similarity measures, several

measures are proposed from the first group of authors to capture the variability in the categorical

data. [Gini, 1912], [Shannon, 1948], [Gambaryan et. al, 1964], [Goodall, 1966], [Hill, 1973],

[Stanfill and Waltz, 1986] and [Eskin et. al, 2002] suggest different measures capable to deal with

the variability of categorical data. The measures are obtained as functions of the frequencies or

relative frequencies of the various categories characterizing a given categorical variable. [Boriah

et. al, 2008] and [Alamuri et. al, 2014] provide a good overview of different variability measures

used for categorical data.

[Burbea and Rao, 1982] propose the φ-entropies measures assuming φ is a continuous concave

function of the probability of a given category of a multinomial random variable. Shannon
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entropy [Shannon, 1948] is a special case. [Salicru et. al, 1993] generalize these measures by

proposing the (h, φ)-entropies measures where φ is assumed to be concave and h differentiable

and increasing or φ convex and h differentiable and decreasing. [Pardo, 2018] in addition to

offering an introduction to these and other variability measures also gives an excellent discussion

of their mathematical and statistical properties. [Rao, 1982a, Rao, 1982b] asserts that any non-

negative real valued concave function defined on the space of probability distributions taking the

value of zero if and only if the distribution is degenerate is an ideal candidate for a measure of

diversity or variability. A classical example regards the Gini-Simpson index [Gini, 1912] defined

as one minus the sum of the squares of the probabilities of the single categories. One can safely

apply these measures to categorical data by simply taking the maximum likelihood estimator of

the probability of the single category (relative frequency) instead of the single probabilities.

[Allaj, 2018] also suggests a measure of variability obtained as one minus the Euclidean

norm of the vector of the relative frequencies of the different categories composing a categorical

variable. The variability measure it is shown to be a function of [Gini, 1912] index. The measure

also falls in the (h, φ)-entropies measures if one assumes that φ is convex and h differentiable

and decreasing.

Measuring the association between categorical variables is still a major issue in the statistics

field, and other fields. The classical tool used to measure the degree of association between two

categorical variables is the Pearson’s chi-squared test of independence [Pearson, 1916]. Many

other measures like phi, contingency coefficient and Cramer’s V are also based on the chi-square

test. [Fávero et. al, 2019] offer an illustration of these measures. Other measures include, for

example, Goodman-Kruskal’s lambda and gamma [Goodman et. al, 1979], Spearman’s rho and

Kendall’s tau [Kendall, 1938]. An association measure was also recently proposed by [Baak et.

al, 2020].

Taking inspiration from the work of [Allaj, 2018] and fuzzy set theory [Zadeh, 1965], this

paper proposes some new variability and association measures for categorical data.

In our setting, the variability is measured for any fuzzy set in the universe of discourse as

given by the set of all categories or classes. The reader might refer to [Zimmermann, 1996] for

an introduction to fuzzy set theory. We define thus the variability measures on the fuzzy power

set of the universe of discourse. Therefore measuring the variability of a fuzzy set or a set of

categorical data is the same as measuring the fuzziness of this set. The membership function

gives the degree of the membership of a given category to a fuzzy set and measures the relative

frequency of this category. To the best of our knowledge, we are the first to establish a link

between the variability of categorical data and fuzziness of fuzzy sets.

As a further step, following the work of [Allaj, 2018], we study some properties of the

variability measure proposed in this paper and suggest that any variability measure applied
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to categorical data should satisfy these properties. Having defined the properties a variability

measure should satisfy, we propose then three new variability measures. The first measure is a

function of the Lp norm, p > 1, where the norm is applied to the vector of the relative frequencies

of a fuzzy set, the second measure is a function of the Lp distance, p > 1, between the vectors

of the relative frequencies of a fuzzy set and the fuzzy set having the maximum variability, and

finally the third measure is a function of the Kullback-Leibler divergence [Kullback and Leibler,

1951] between the vectors of the relative frequencies of a fuzzy set and the maximum variability

fuzzy set. The maximum variability fuzzy set is the set which has equal relative frequencies for

each possible category. The measure proposed in [Allaj, 2018] is a particular case of the first

measure for p = 2.

The measures of association between two categorical variables are defined for any fuzzy re-

lation on the Cartesian product of the universe of discourse sets of the single variables. The

elements of the universe of discourse sets are given by the categories of each variable. The

general form of the association measures is given by one minus the average between the vari-

ability measures applied to the single categorical variables. It follows that one can obtain an

association measure by simply changing the variability measures used to measure the variabil-

ity of the single categorical variables. Using the particular form of the association measures,

we prove then some properties of these measures which we believe any association measure

should satisfy. Contrary to many other measures of association proposed for categorical data

which are concerned with establishing whether a given observed frequency distribution differs

from a theoretical distribution, our association measures are functions only of the frequency

distribution.

Finally, we show through an example that our proposed measures easy apply to general

multinomial random variables.

The paper is structured as follows. Section 2 introduces the variability measures in the two

category case. Section 3 generalizes the result in the general case of k categories. Section 4

proposes the association measures. In Section 5, we show that the variability and the associa-

tion measures can also be easily computed for categorical random variables. The final section

concludes.

2 Measuring variability in the two category case

Let X denote the set of all categories or classes, the universe of discourse, i.e. the set of positive

integers including 0 as given by X = {0, 1, 2, ..., k − 1}, where k ≥ 2 is an integer. A fuzzy set

in X is defined as follows.

Definition 2.1 A fuzzy set Ã in the universe of discourse X is a set of ordered pairs given as

3



follows

Ã = {(x, fÃ(x)) : x ∈ X} (1)

where the mapping fÃ : X → N associates to each value of X the degree of membership in Ã

with N giving the membership space. The space N is the unit interval [0, 1].

The membership function fÃ(x) measures the relative frequency of the category x in Ã. A

value of zero of this function indicates zero membership of the category x to the fuzzy set Ã.

This means that no elements fall in this category. When, on the other side, fÃ(x) assumes the

value of one, the degree of the membership of x to Ã is full. Of course, in this case all the

elements fall in the category x. Another characteristic of the membership function fÃ(x) is that

the cardinality, the sum of the relative frequencies of each distinct category is equal to one, i.e.∑
x∈X fÃ(x) = 1. These properties of the membership function are summarized in the following

definition.

Definition 2.2 The membership function fÃ(x) of a fuzzy set Ã satisfies the properties.

1. 0 ≤ fÃ(x) ≤ 1.

2. fÃ(x) = 0 when no elements fall in the category x.

3. fÃ(x) = 1 when all the elements fall in the category x.

4.
∑

x∈X fÃ(x) = 1.

Suppose now that you collect data on two elements on a given categorical variable having

two levels. Then, Ã1 = {(0, 1), (1, 0)} and Ã2 = {(0, 0), (1, 1)} are the Crisp sets corresponding

to the extreme cases where all the elements lie within a single category. On the other hand, the

fuzzy set Ã3 = {(0, 1/2), (1, 1/2)} represents the situation where elements are equally distributed

across the two categories.

The outcome (1, 1), meaning that the first element falls in the first category and the second

one in the second category, has the highest variability (see [Allaj, 2018]) if one uses the variability

measure

vk = 1− ||fk|| = 1−
√
f20 + f21 + ...+ f2k−1 (2)

or

vk,s =
vk

1− 1√
k

(3)

where k ≥ 2 gives the number of categories and fi = ni
n , with ni giving the number of elements

falling in category i = 0, 1, ..., k−1 and n the total number of elements, measures the proportion

of elements falling in category i.
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On the opposite, the outcomes (0, 1) and (1, 0) have the lowest variability. [Allaj, 2018] gives

also an interesting geometric interpretation of the variability of the different possible outcomes

corresponding to the case when we have only two categories. Assuming that the number of

elements is equal to n, we have that each possible outcome has a relative frequencies vector

that can be represented geometrically as a vector in the positive quadrant of the (f0, f1) space.

In Figure 1, we show five possible outcomes with relative frequencies vectors given by
−→
A =

(1/2, 1/2),
−→
B = (1/3, 2/3),

−→
C = (2/3, 1/3),

−→
D = (0, 1), and

−→
E = (1, 0).

0 1 f0

f1

0

1

−→
D

−→
E

−→
C

−→
A

−→
B

Figure 1: Variability illustration - Two category case

The measures vk and vk,s assume the maximum value when the vector of the relative frequen-

cies is equal to
−→
A = (1/2, 1/2). Clearly, the relative frequencies of each category corresponding

to each possible outcome can be represented through a point lying on the line segment shown

in Figure 1. Also, any relative frequencies vector can be expressed as a linear combination of

the two vectors (or vertices) (0, 1) and (1, 0), the outcomes with the lowest variability. Finally,

there is an inverse relationship between the Euclidean norm and the variability.

The reader will notice that the geometrical interpretation of the variability presented here

is quite similar to the geometrical interpretation of the fuzzy sets offered by [Kosko, 1992].

Indeed, every fuzzy set Ã can be visualized as a point on the line segment shown in Figure 1

where the x-axis gives the degree of membership of category 0 to Ã and the y-axis the degree

of membership of category 1 to Ã. Therefore, following [Kosko, 1992], the fuzzy set Ã3 has the

maximum fuzziness and the fuzzy sets Ã1 and Ã2 the minimum fuzziness. The last two fuzzy

sets as mentioned before are viewed as Crisp sets. We will assume henceforth that the fuzzy set

with the maximum fuzziness corresponds to the outcome with the maximum variability. Thus,

the degree of fuzziness of a fuzzy set gives also the variability of the corresponding outcome.

Note that using again the results in [Allaj, 2018], the number of all possible fuzzy and Crisp

sets in the two-category case when n elements are available is equal to n+ 1.
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Hereafter, for a given fuzzy set Ã we let v2(Ã) and v2,s(Ã) denote

v2(Ã) = 1−
√
f2
Ã

(0) + f2
Ã

(1)

v2,s(Ã) =
v2(Ã)

1− 1√
2

(4)

We shall now discuss some properties of the second fuzziness or the variability measure. It is

not difficult to show that v2,s(Ã) satisfies the following properties.

Definition 2.3 The measure v2,s(Ã) satisfies the following properties.

1. Let Ã be a fuzzy set. Then v2,s(Ã) = 0 if and only if Ã is a Crisp set, i.e. Ã = {(0, 0), (1, 1)}
or Ã = {(0, 1), (1, 0)}.

2. Let Ã be a fuzzy set. Then v2,s(Ã) assumes its absolute maximum equal to one at fÃ(0) =

1/2 and fÃ(1) = 1/2.

3. Let Ã and B̃ be two fuzzy sets. Then, v2,s(Ã) ≥ v2,s(B̃) if fÃ(0) ≥ fB̃(0) or fÃ(1) ≥ fB̃(1)

for fÃ(0) ≤ 1
2 or fÃ(1) ≤ 1

2 . Similarly, v2,s(Ã) ≥ v2,s(B̃) if fÃ(0) ≤ fB̃(0) or fÃ(1) ≤
fB̃(1) for fÃ(0) ≥ 1

2 or fÃ(1) ≥ 1
2 .

4. If Ã is a fuzzy set, then its complement Ãc satisfies the equality v2,s(Ã) = v2,s(Ã
c).

The first and the second property are proved in [Allaj, 2018]. They assert, respectively, that the

variability measure is bounded below by 0 and above by 1. The last property follows easily by the

symmetry of the Euclidean norm. This means that whenever fÃ(0) is equal to fB̃(1) and fÃ(1)

equal to fB̃(0), the variability of the fuzzy sets Ã and B̃ are the same. For example, outcomes

with vector of relative frequencies equal to
−→
B and

−→
C in Figure 1 have the same variability. To

see this, let Ã = {(0, fÃ(0)), (1, fÃ(1))}. We have then that Ãc = {(0, 1− fÃ(0)), (1, 1− fÃ(1))}
and

v2,s(Ã) =
1−

√
f2
Ã

(0) + f2
Ã

(1)

1− 1√
2

v2,s(Ã
c) =

1−
√

(1− fÃ(0))2 + (1− fÃ(1))2

1− 1√
2

(5)

The result then follows. The third property says that when a given fuzzy set is Crisper (”closer”

to the fuzzy sets Ã = {(0, 0), (1, 1)} or Ã = {(0, 1), (1, 0)}) than any other fuzzy set, it has a

lower variability. In a similar fashion, a given fuzzy set has a higher variability when it is closer

to the fuzzy set Ã = {(0, 1/2), (1, 1/2)}. These can be noticed by writing v2,s(Ã) as

v2,s(Ã) =
1−

√
2fÃ(0)(fÃ(0)− 1) + 1

1− 1√
2

(6)
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or

v2,s(Ã) =
1−

√
2fÃ(1)(fÃ(1)− 1) + 1

1− 1√
2

(7)

and taking then the first derivative of v2,s(Ã) with respect to fÃ(0)

v′2,s(Ã) =
−[2fÃ(0)(fÃ(0)− 1) + 1]−

1
2 (2fÃ(0)− 1)

1− 1√
2

(8)

or fÃ(1)

v′2,s(Ã) =
−[2fÃ(1)(fÃ(1)− 1) + 1]−

1
2 (2fÃ(1)− 1)

1− 1√
2

(9)

The derivatives do not exist only at the extreme points where fÃ(0) = 0 (fÃ(1) = 1) or fÃ(0) = 1

(fÃ(1) = 0). But, these are the relative frequencies corresponding to the fuzzy sets having the

minimum variability. It follows that property 3 is also valid for these points.

Properties 1-4 of the variability measure v2,s(Ã) are very close to the properties a measure

of fuzziness should satisfy [De Luca and Termini, 1972]. See also [Xuecheng, 1992] for a more

recent citation. Therefore, from now on, any measure satisfying properties 1-4 is a suitable

candidate for measuring the variability of categorical data in the two category case.

Having determined the properties a variability measure should satisfy, it will also be inter-

esting to introduce other measures capable to measure the variability of categorical data. Using

results in fuzzy set theory, we can define a new distance measure as follows

D2(Ã, Ã
c) = 1−

[∑1
i=0 |fÃ(xi)− fÃc(xi)|2

] 1
2

√
2

(10)

where x0 = 0 and x1 = 1.

The variability measure D2(Ã, Ã
c) is similar to the measure of fuzziness introduced by [Yager,

1979]. The only difference is in the denominator. In our setting, the interpretation of this

measure is very intuitive. Indeed, suppose for example that B̃ = {(0, 1/3), (1, 2/3)}. Therefore,

B̃c = {(0, 2/3), (1, 1/3)}. We display the vectors of the relative frequencies of these two fuzzy

sets graphically in Figure 2, where
−→
B ,
−→
D and

−→
E are as before, while

−→
M = (1/2, 1/2) and

−→
B c = (2/3, 1/3).

It is easy to see that the Euclidean distance between vectors
−→
B and

−→
B c or the Euclidean

norm of the vector difference
−→
B −
−→
B c is the same as the Euclidean norm of the hypotenuse of the

right triangle with vertices (1/3, 1/3), (1/3, 2/3) and (2/3, 1/3). Using a geometrical argument,

this norm can also be derived as the sum of the Euclidean norm of the hypotenuses of the right

triangle with vertices (1/2, 1/3), (1/2, 1/2) and (2/3, 1/3) and of the right triangle with vertices

(1/3, 1/2), (1/3, 2/3) and (1/2, 1/2). Now, by symmetry, it is also not difficult to conclude that
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0 1
f·(0)

f·(1)

0

1

−→
D

−→
E

−→
Bc

−→
M

−→
B

1/21/3 2/3

1/3

1/2

2/3

Figure 2: Variability illustration - The D2(Ã, Ã
c) measure case

the Euclidean norms of the hypotenuses of the last two right triangles have the same value.

Consequently, D2(Ã, Ã
c) can be re-expressed as

D2(Ã, Ã
c) = 1−

2
[∑1

i=0 |fÃ(xi)− fM̃ (xi)|2
] 1

2

√
2

(11)

where clearly the vector
−→
M = (1/2, 1/2) gives the relative frequencies or the membership values

of the fuzzy set with the maximum variability.

Using this new expression for the variability measure D2(Ã, Ã
c), we can assert that D2(Ã, Ã

c)

depends on the distance between the vector of the relative frequencies of Ã and the vector of

relative frequencies of M̃ , the fuzzy set with the highest variability. As this distance increases,

the variability of D2(Ã, Ã
c) approaches zero and as this distance decreases, the variability of

D2(Ã, Ã
c) tends to one.

The properties 1-4 valid for measure v2,s(Ã) are also satisfied by D2(Ã, Ã
c). One can prove

these geometrically using Figure 2. Algebraically, it is sufficient writing D2(Ã, Ã
c) as

D2(Ã, Ã
c) = 1−

2
[
|fÃ(0)− 1

2 |
2 + |12 − fÃ(0)|2

] 1
2

√
2

(12)

By equating D2(Ã, Ã
c) to zero and squaring both sides of the equation, we get that

|fÃ(0)− 1

2
|2 + |1

2
− fÃ(0)|2 =

(√
2

2

)2

=
1

2
(13)

Noticing that |fÃ(0)− 1
2 | = |

1
2 − fÃ(0)|, we can further re-write the above equation as

|fÃ(0)− 1

2
| = 1

2
(14)
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which is true for fÃ(0) = 0 or fÃ(0) = 1. Substituting the latter values into Equation (12),

we can also find that D2(Ã, Ã
c) = 0. Therefore, we have proved the ’only if’ and ’if’ part of

property 1.

Take now the first derivative of D2(Ã, Ã
c) with respect to fÃ(0) to get

D′2(Ã, Ã
c) =

−(|fÃ(0)− 1
2 |

2 + |12 − fÃ(0)|2)(4fÃ(0)− 2)
√

2
(15)

It is now clear that D′2(Ã, Ã
c) ≥ 0 whenever fÃ(0) ≤ 1

2 and negative whenever fÃ(0) ≥ 1
2 . In the

same spirit we can write Equation (12) in terms of fÃ(1) rather than in terms of fÃ(0). Thus,

we have just shown property 2 and 3 of Definition 3.1. Note that property 2 holds given that

the norm function is strictly convex. The last property of Definition 3.1 follows from Equation

(10) or (12).

The last measure we would like to discuss is the Shannon entropy [Shannon, 1948].

[De Luca and Termini, 1972] suggest to use the entropy measure in order to measure the fuzziness

of a given fuzzy set. Their entropy measure is defined by summing the entropy of a fuzzy set Ã

to the entropy of the complement of this fuzzy set, i.e.

d(Ã) = H(Ã) +H(Ãc) (16)

where H(Ã) in the two category case is given by

H(Ã) = −K
1∑
i=0

fÃ(xi) ln fÃ(xi) (17)

where K is a positive constant. Using the fact that fÃc(xi) = 1 − fÃ(xi) and that fÃ(1) =

1− fÃ(0), we can write d(Ã) as

d(Ã) = −K
1∑
i=0

fÃ(xi) ln fÃ(xi)−K
1∑
i=0

fÃc(xi) ln fÃc(xi)

= −K
1∑
i=0

fÃ(xi) ln fÃ(xi)−K
1∑
i=0

(1− fÃ(xi)) ln(1− fÃ(xi))

= −KfÃ(0) ln fÃ(0)−KfÃ(1) ln fÃ(1)−KfÃ(1) ln fÃ(1)−KfÃ(0) ln fÃ(0)

= −2K
1∑
i=0

fÃ(xi) ln fÃ(xi) (18)

We can conclude that in our setting d(Ã) reduces to the classical Shannon entropy measure. As

a result, we define the entropy measure to be equal to

d2(Ã, M̃) = 1−

∑1
i=0 fÃ(xi) ln

fÃ(xi)

fM̃ (xi)

ln 2
(19)
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with the convention that 0 ln 0 = 0.

The measure d2(Ã, M̃) compares the set Ã to the maximum variability set M̃ . What matters

thus in the computation of this measure is the dissimilarity between the fuzzy set Ã and the

fuzzy set having the maximum variability. As can be observed, the measure is similar to the

Kullback-Leibler divergence [Kullback and Leibler, 1951]. We can thus interpret the fuzzy set M̃

as the state of the world and the fuzzy set having relative frequencies situated at the midpoint

of the line in Figure 1.

Obviously, this measure tends to one when the fuzzy set Ã gets close to M̃ and approaches

zero when Ã tends to one of the Crisp sets. As with the previous two measures, d2(Ã, M̃) satisfies

the first property outlined in Definition 3.1. To derive the second and the third property it is

sufficient to write d2(Ã, M̃) in terms of fÃ(0) (or fÃ(1)) and compute its first derivative with

respect to fÃ(0) (or fÃ(1)). In fact, we have that the first derivative of −
∑1

i=0 fÃ(xi) ln
fÃ(xi)

fM̃ (xi)

with respect to fÃ(0) is given by

− ln
fÃ(0)

fM̃ (0)
+ ln

1− fÃ(0)

fM̃ (1)
(20)

The last property can be proved by writing
∑1

i=0 fÃc(xi) ln
fÃc (xi)

fM̃ (xi)
as

(1− fÃ(0))
(1− fÃ(0))

fM̃ (0)
+ (1− fÃ(1))

(1− fÃ(1))

fM̃ (1)

= fÃ(1)
fÃ(1)

fM̃ (0)
+ fÃ(0)

fÃ(0)

fM̃ (1)
=

1∑
i=0

fÃ(xi) ln
fÃ(xi)

fM̃ (xi)
(21)

where we have used the fact that fÃ(0) + fÃ(1) = 1 and fM̃ (0) = fM̃ (1).

3 Generalization of the previous results

Let X = {0, 1, ..., k − 1} be our universe of discourse with k ≥ 2. The fuzzy power set (see

[Kosko, 1986]) of X denoted by F (2X) is defined as {Ã|Ã is a fuzzy subset of X}. We also let
−→
fÃ denote the k-dimensional vector (fÃ(0), fÃ(1), ..., fÃ(k− 1)) associated to the fuzzy set Ã. A

measure of variability (fuzziness) for categorical data having k categories is a mapping M from

F (2X) to [0, 1] satisfying the following four properties.

Definition 3.1 The measure M : F (2X)→ [0, 1] satisfies the following properties.

1. Let Ã be a given fuzzy set in X. Then, M(Ã) = 0 if and only if Ã is a Crisp set, i.e.
−→
fÃ

is equal to one of the natural basis vector in the Rk space.

2. Let Ã be a given fuzzy set in X. Then, M(Ã) assumes its unique maximum equal to one

at
−→
fÃ = (1/k, 1/k, ..., 1/k).
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3. Let Ã and B̃ be two fuzzy sets such that each element of the vectors
−→
fÃ and

−→
fB̃ is different

from zero. Then M(Ã) ≤ M(B̃) if
∑

x∈C(X) fÃ(x) ≥
∑

x∈C(X) fB̃(x) ≥ k−1
k and M(Ã) ≤

M(B̃) if
∑

x∈C(X) fÃ(x) ≤
∑

x∈C(X) fB̃(x) ≤ k−1
k , where C(X) is a set contained in the

set of all possible combinations of order k − 1 of X.

4. Suppose Ã is a fuzzy set with a membership vector equal to
−→
fÃ = (fÃ(0), fÃ(1), ..., fÃ(k −

1)). Then, any other fuzzy set with membership vector obtained by permuting the elements

of
−→
fÃ has identical variability as the original fuzzy set Ã.

Remark 3.2 The reader will have observed that the standard definition of the complement of

a fuzzy set is not valid in the general case of data having k categories. Indeed, taking the

complement of a fuzzy set we would have that the membership function would fail to satisfy

property 4 of Definition 2.2. Note also that property 4 in Definition 2.3 in the case of the

two category case is the same as property 4 in Definition 3.1 and that the number of possible

permutations (with repetition) including the original set is equal to k!
n1!n2!...nk!

where ni! gives the

number of times the same numerical value of fi occurs.

Remark 3.3 As mentioned in the previous section, properties in Definition 3.1 are close to

those proposed by [De Luca and Termini, 1972] for the measures of fuzziness. The non-negativity

of M and the fact that this measure is equal to zero if and only if the relative frequencies vector

is degenerate is a property of many other similarity or entropy measures proposed in literature.

For example, focusing on the multinomial case, the measures defined in [Gini, 1912], [Shannon,

1948], [Rényi, 1961] and [Behara and Chawla, 1974] satisfy this property. The maximum for

these measures is also achieved when the uniform distribution is used and these measures satisfy

property 4 of Definition 3.1. The ”if” conditions in property 3 of Definition 3.1 can also be

written as fÃ(x) ≤ fB̃(x) ≤ 1
k or fÃ(x) ≥ fB̃(x) ≥ 1

k where x /∈ C(X). This indicates that

M is a non-decreasing function of f·(x) on the interval (0, 1k ] or non-increasing on the interval

[ 1k , 1) for a value of x /∈ C(X). The property extends naturally property 3 of Definition 2.3 to

the general case of k categories. The four properties proposed in Definition 3.1 do not define

only a specific functional form for the measure M like the Shannon-Khinchin axioms [Shannon,

1948, Khincin, 1957] and do not require M to be concave [Rao, 1982a, Rao, 1982b] or to satisfy

differentiability and concavity-convexity assumptions as in [Burbea and Rao, 1982] and [Salicru

et. al, 1993].

Figure 3 illustrates the feasible region for the membership function f in the three category case.

As can be seen, the (simplex) region of interest is an equilateral triangle. In general, the region

would be a polytope of dimension k [Ziegler, 2012].

We measure the variability (fuzziness) of a fuzzy set Ã by using one of the following measures.
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fÃ(0)

fÃ(1)

fÃ(2)

(1, 0, 0) (1/3, 2/3, 0)

(1/3, 0, 2/3)

(0, 1, 0)

(0, 1/3, 2/3)

(0, 0, 1)

(1/3, 1/3, 1/3)

Figure 3: Variability illustration - Three category case

Definition 3.4 The measure of variability M : F (2X) → [0, 1] is assumed to have one of the

following forms.

1. vpk,s(Ã) =
1−||
−→
fÃ||p

1− 1
p√

kp−1

, where ||
−→
fÃ||p = (

∑
x∈X |fÃ(x)|p)1/p with p > 1.

2. Dp,k(Ã, M̃) = 1 − k
[(k−1)+(k−1)p]1/p ||

−→
fÃ −

−→
fM̃ ||p, where ||

−→
fÃ −

−→
fM̃ ||p = (

∑
x∈X |fÃ(x) −

fM̃ (x)|p)1/p with p > 1.

3. dk(Ã, M̃) = 1−
∑

x∈X fÃ(x) ln
f
Ã

(x)

f
M̃

(x)

ln k .

where the fuzzy set M̃ is the set with the maximum variability.

Remark 3.5 The measures defined in Definition 3.4 are a generalization of the measures seen

in the previous section. In particular, taking p = 2, vpk,s is equal to the measure proposed by

[Allaj, 2018]. This measure also falls in the (h, ψ)-entropies measures proposed by [Salicru et.

al, 1993] if one takes ψ =
∑

x∈X φ(fÃ(x)) and h = 1−
√
ψ

1− 1√
k

where φ = |fÃ(x)|2. Note also that

vpk,s is different from the entropy measure suggested by [Behara and Chawla, 1974] and the Gini-

Simpson index [Gini, 1912] when p = 2. The former can be written as
1−||
−→
fÃ||p

1− 1
p√

2p−1

, p 6= 1, p ≥ 0,

and the latter as 1−
∑

x∈X |fÃ(x)|2.

Having reached this point, we have to show that each of the proposed variability measure satisfy

the properties described in Definition 3.1. Let’s focus on the measure vpk,s(Ã) and suppose that

vpk,s(Ã) = 0. Then
∑

x∈X |fÃ(x)|p = 1. The inequality

∑
x∈X
|fÃ(x)|p =

k−1∑
i=0

|fÃ(xi)|p ≤ (

k−1∑
i=0

|fÃ(xi)|)p (22)
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shows that
∑

x∈X |fÃ(x)|p = 1 only when the mixed terms on the right-hand side of this in-

equality are equal to zero.

This is of course achieved when
−→
fÃ is equal to one of the natural basis vector in the Rk space

which coincides with one of the vertices of the standard simplex in the Rk space. On the other

hand, when
−→
fÃ is equal to one of the natural basis vector in the Rk space, vpk,s(Ã) = 0. It follows

that vpk,s(Ã) fulfills the first property.

Taking now the first partial derivatives (see Equation (23)) of ||
−→
fÃ||p and setting them to

zero, we get that (1/k, 1/k, . . . , 1/k) is a stationary point of ||
−→
fÃ||p. The first partial deriva-

tives exist for all vectors
−→
fÃ having non-zero elements. Since ||

−→
fÃ||p is a norm, it is also con-

vex. Results in optimization theory show then that the stationary point is a local minimizer.

But given that ||
−→
fÃ||p is defined on the simplex region S = {

−→
fÃ : Ã ∈ F (2X), 0 ≤ fÃ(x) ≤

1 and
∑

x∈X fÃ(x) = 1, ∀x ∈ X}, this critical point is also a global minimum [Sun and

Yuan, 2006]. The fact that p > 1 implies that || · ||p is strictly convex, and as a result this point

is also the unique global minimum. It is then not difficult to conclude that the second property

of Definition 3.1 is satisfied.

To check if vpk,s(Ã) satisfies property 3, we need first to compute the first partial derivatives

of ||
−→
fÃ||p = (

∑
x∈X |fÃ(x)|p)1/p = (

∑k−1
i=0 |fÃ(xi)|p)1/p = (|fÃ(0)|p+ |fÃ(1)|p+ · · ·+ |fÃ(k−2)|p+

|1 − fÃ(0) − fÃ(1) − · · · − fÃ(k − 2)|p)1/p. Simple computations show then that these partial

derivatives are equal to

(|fÃ(0)|p+|fÃ(1)|p+· · ·+|fÃ(k−2)|p+|fÃ(xk−1)|p)
1−p
p [fÃ(xi)|fÃ(xi)|p−2−fÃ(xk−1)|fÃ(xk−1)|p−2]

(23)

for every i = 0, 1, . . . , k − 2. The partial derivatives are all non-negative when

fÃ(xi) ≥ fÃ(xk−1), i = 0, 1, . . . , k − 2 (24)

Summing the above inequalities over the index i, we get that

k−2∑
i=0

fÃ(xi) ≥
k − 1

k
(25)

We can thus conclude that for any fuzzy set Ã and B̃, (
∑

x∈X |fÃ(x)|p)1/p ≥ (
∑

x∈X |fB̃(x)|p)1/p

holds if
∑k−2

i=0 fÃ(xi) ≥
∑k−2

i=0 fB̃(xi) ≥ k−1
k . The opposite still holds by requiring first partial

derivatives to be non-positive. Equation (25) remains true even in the case when we decide to

express a different relative frequency from fÃ(xk−1) as a function of the other relative frequencies.

It follows then that vpk,s(Ã) satisfies property 3 of Definition 3.1.

Showing that vpk,s(Ã) satisfies the last property of Definition 3.1 it is a straightforward

exercise.

13



The first two properties of Definition 3.1 can be easily shown to hold for the Dp,k(Ã, M̃)

measure. In particular, for the first property we can write the condition

Dp,k(Ã, M̃) = 1− k

[(k − 1) + (k − 1)p]1/p
||
−→
fÃ −

−→
fM̃ ||p = 0 (26)

as

1 =
k

[(k − 1) + (k − 1)p]1/p
||
−→
fÃ −

−→
fM̃ ||p (27)

Given that the function ||
−→
fÃ −

−→
fM̃ ||p is strictly convex, for p > 1, in

−→
fÃ, Ã ∈ F (2X), it assumes

its maximum at the extreme points of S. The other side of the property 1 is easily proved.

One can take the first partial derivatives of ||
−→
fÃ −

−→
fM̃ ||p at the points where the elements

of
−→
fÃ are different from zero to show that these satisfy the same system of equations defined in

Equation (24) and hence property 3 of Definition 3.1 is automatically satisfied by Dp,k(Ã, M̃).

Property 4 follows from the properties of the distance function.

Regarding the last measure, we can write the condition dk(Ã, M̃) = 0 as∑
x∈X fÃ(x) ln

fÃ(x)

fM̃ (x)

ln k
= 1 (28)

The function in the numerator is strictly convex on the unit simplex and therefore assumes its

maximum at the vertices of this simplex. At these points, the above condition is satisfied. Any

other point in the unit simplex would fail to satisfy Equation (28). Clearly, when
−→
fÃ is equal to

one of the natural basis vector, dk(Ã, M̃) = 0. We have thus shown that property 1 of Definition

3.1 holds for dk(Ã, M̃).

The function dk(Ã, M̃) is strictly concave on the unit simplex and assumes its unique max-

imum at
−→
fÃ = (1/k, 1/k, . . . , 1/k). Property 3 of Definition 3.1 also follows by taking the first

partial derivatives of dk(Ã, M̃) with respect to the relative frequencies having all the elements

different from zero. To see this, note that these first partial derivatives are of the form

d′k(Ã, M̃) = −
ln

fÃ(xi)

fM̃ (xi)
− ln

fÃ(xk−1)

fM̃ (xk−1)

ln k
(29)

where i = 0, 1, ..., k− 2 and fÃ(xk−1) is expressed in terms of the other relative frequencies. We

can then repeat the same analysis done for vpk,s(Ã) and Dp,k(Ã, M̃) to get the final result.

Permuting the elements of
−→
fÃ does not have any influence on the variability measure.

We collect these results in the following theorem.

Theorem 3.6 The measures proposed in Definition 3.4 satisfy the properties described in Def-

inition 3.1.
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4 Measures of association

In this section, we introduce some association measures which we will use to measure the strength

of the relationship between two categorical variables. We start the illustration of this measure

with the following definition.

Definition 4.1 Let X and Y be two universe of discourse sets of form {0, 1, 2, ..., kX − 1} and

{0, 1, 2, ..., kY − 1} with kX ≥ 2 and kY ≥ 2. Then, R denote the relation

R = {(x, y), fR(x, y)|(x, y) ∈ X × Y } (30)

in X × Y .

Clearly, R coincides with the definition of the fuzzy relation in [Zadeh, 1965, Zadeh, 1971]. In

our case the membership function fR(x, y) associated to each (x, y) gives also the joint frequency

of the category x and y under the relation R.

Example 4.2 Suppose we have two sets of categorical data with the following crosstabulation

Y

X 0 1 Tot.

0 1/4 1/4 1/2

1 1/4 1/4 1/2

Tot. 1/2 1/2 1

where X and Y are two universal sets both equal to {0, 1}. The membership function fR(x, y)

can be expressed in this particular example as

fR(x, y) =
1

kXkY
=

1

4
, ∀(x, y) ∈ X × Y (31)

where R is given by the following matrix

X/Y 0 1

R =
0

1

[
1/4 1/4

1/4 1/4

]

with the related fuzzy graph [Mordeson and Nair, 2012] shown in Figure 4.

The properties of the membership function fR(x, y) are listed in Definition 4.3.

Definition 4.3 R is a relation in X × Y if

1. 0 ≤ fR(x, y) ≤ 1.
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x=0

y=0

y=1

x=1

1/4

1/4

1/4

1/4

Figure 4: Illustration of the association

2. fÃX
R

(x) =
∑

y∈Y fR(x, y), where ÃXR is a fuzzy set in the universe of discourse X given as

ÃXR = {(x, fÃX
R

(x)) : x ∈ X}.

3. fÃY
R

(y) =
∑

x∈X fR(x, y), where ÃYR is a fuzzy set in the universe of discourse Y given as

ÃYR = {(y, fÃY
R

(y)) : y ∈ Y } .

4.
∑

x∈X
∑

y∈Y fR(x, y) = 1.

A direct consequence of Definition 4.3 is that
∑

x∈X fÃX
R

(x) = 1 and
∑

y∈Y fÃY
R

(y) = 1 which

implies fÃX
R

(x) and fÃY
R

(y) define a membership function for the fuzzy sets ÃXR and ÃYR .

Suppose now that the relation R in X × Y of Example 4.2 can be expressed as

X/Y 0 1

R =
0

1

[
0 1

0 0

]
This of course corresponds to the situation where all the elements fall in the category 0 of X and

category 1 of Y . This means that there is a perfect association between X and Y . Note how in

this case fÃX
R

(0) = 1, fÃX
R

(1) = 0, fÃY
R

(0) = 0 and fÃY
R

(1) = 1 implying that ÃXR = {(0, 1), (1, 0)}
and ÃYR = {(0, 0), (1, 1)}. Using one of the variability measures described in the previous section,

the fuzzy sets ÃXR and ÃYR can be easily seen to have the lowest variability or fuzziness. This is

true whenever the sets ÃXR and ÃYR are equal to one of the Crisp sets. We can thus establish that

when a perfect association between X and Y exists, the variability of each categorical variable

achieves its minimum value equal to zero.

The opposite is true when our data obey the relation R outlined in Example 4.2. In fact,

the sets ÃXR = {(0, 1/2), (1, 1/2)} and ÃYR = {(0, 1/2), (1, 1/2)} have now the highest variability

which is also reflected in the fact that the elements are equally distributed across the joint

categories of X and Y .

Motivated by these last considerations, we define the association measure between two cat-

egorical variables X and Y governed by a given relation R as in the following definition.
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Definition 4.4 Let X, Y and R be defined as in Definitions 4.1 and 4.3. Then,

ρR(X,Y ) = 1− 1

2
[M(ÃXR ) +M(ÃYR)] (32)

measures the association between X and Y governed by a given relation R.

The measures M(ÃXR ) and M(ÃYR) of the fuzzy sets ÃXR and ÃYR are given by one of variability

measures described in the previous section.

An immediate consequence of Definition 4.4 is that ρR(X,Y ) assumes its maximum value equal

to one when M(ÃXR ) = 0 and M(ÃYR) = 0, and its minimum value equal to 0 when M(ÃXR ) = 1

and M(ÃYR) = 1, which was what we expected to get from an association measure between two

categorical variables.

The properties of ρR(X,Y ) shown below follow easily from the properties of the variability

measure M and ρ.

Definition 4.5 The measure ρR(X,Y ) satisfies the following properties.

1. Let R be a relation in X × Y . Then, 0 ≤ ρR(X,Y ) ≤ 1.

2. Let R be a relation in X × Y . Then, ρR(X,Y ) = 1 (highest degree of association) if and

only if M(ÃXR ) = 0 and M(ÃYR) = 0.

3. Let R be a relation in X × Y . Then, ρR(X,Y ) = 0 (lowest degree of association) if and

only if M(ÃXR ) = 1 and M(ÃYR) = 1.

4. Suppose R is a relation in X × Y . We have that ρR(X,X) = M(ÃXR ) and ρR(Y, Y ) =

M(ÃYR).

5. Suppose R is a relation in X × Y . Then, ρR(X,Y ) = ρR(Y,X).

6. Let R be a relation in X×Y and let R′ be another relation with vector of relative frequencies
−−→
fÃX

R′
and
−−→
fÃY

R′
obtained by permuting the elements of

−−→
fÃX

R
= (fÃX

R
(0), fÃX

R
(1), . . . , fÃX

R
(kX−

1)) or/and
−−→
fÃY

R
= (fÃY

R
(0), fÃY

R
(1), . . . , fÃY

R
(kY − 1)). Then, ρR′(X,Y ) = ρR(X,Y ).

7. Suppose R is a relation in X×Y and let also ÃXR , ÃXR′ and ÃYR, ÃYR′ be fuzzy sets in X and

Y , respectively. Suppose also that each element of the vectors
−−→
fÃX

R
,
−−→
fÃX

R′
,
−−→
fÃY

R
and
−−→
fÃY

R′
is

different from zero. Then, ρR(X,Y ) ≤ ρR′(X,Y ) if
∑kX−1

i=1 fÃX
R

(xi) ≥
∑kX−1

i=1 fÃX
R′

(xi) ≥
kX−1
kX

and
∑kY −1

i=1 fÃY
R

(yi) ≥
∑kY −1

i=1 fÃY
R′

(yi) ≥ kY −1
kY

. Similarly, ρR(Y,X) ≤ ρR′(Y,X) if∑kX−1
i=1 fÃX

R
(xi) ≤

∑Xk−1
i=1 fÃX

R′
(xi) ≤ kX−1

kX
and

∑kY −1
i=1 fÃY

R
(yi) ≤

∑kY −1
i=1 fÃY

R′
(yi) ≤ kY −1

kY
.

In general, any association measure satisfying properties 1-7 is a potential candidate for mea-

suring the association between two categorical variables.
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Remark 4.6 Many association measures proposed in literature are based on the chi-squared

test. Examples include the phi coefficient and the Cramer’s V measure (see [Fávero et. al, 2019]

for an overview of these and other measures). Recent studies also propose measures based on the

chi-squared test. [Zhang, 2019] proposes an association measure based on the weighted Minkowski

distance between the joint probabilities and the product between the marginal probabilities of two

categorical variables. [Baak et. al, 2020] obtain a correlation coefficient for categorical variables

by inverting the chi-squared test. To our knowledge, our measures of association have not been

proposed yet in literature.

Example 4.7 Suppose we are interested in the relationship between gender and college ma-

jor choice and that we have selected a sample of 500 individuals with data summarized in the

following crosstabulation.

Y

X 0 1 2 Tot.

0 150 80 20 250

1 70 70 110 250

Tot. 220 150 130 500

where X = {Male, Female} is coded as 0, 1 and Y = {Engineering,Business,Humanities}
is coded as 0, 1, 2.

The relation R is then given as

X/Y 0 1 2

R =
0

1

[
150/500 80/500 20/500

70/500 70/500 110/500

]
and the association measure ρR(X,Y ) is equal approximately to 0.018, 0.082 and 0.012 using the

variability measures vpk,s(Ã), Dp,k(Ã, M̃) and dk(Ã, M̃) for p = 2. The association is low given

the high variability in the variables X and Y , equal to one in the case of X for all the variability

measures and equal approximately to 0.964, 0.836 and 0.976 in the case of Y for the variability

measures vpk,s(Ã), Dp,k(Ã, M̃) and dk(Ã, M̃). We note that vpk,s(Ã) and dk(Ã, M̃) give almostly

the same result, while Dp,k(Ã, M̃) gives a slightly different result.

The situation will be slightly different if one has this relation between gender and college

major choice.

X/Y 0 1 2

R =
0

1

[
120/500 50/500 10/500

10/500 40/500 270/500

]
Using the variability measure vpk,s(Ã) with p = 2 we get that the association measure is approxi-

mately equal to 0.124 showing a higher degree of association compared to the previous situation.
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5 Variability and association measures for categorical random

variables

The results obtained in the previous section remain unchanged if instead of considering relative

frequencies we consider probabilities. We illustrate this with the following example.

Example 5.1 Let X = {Red,Blue,Black} and Y = {Male, Female} be two variables mea-

suring respectively the color and gender. Assume also that R = {(x, y), pR(x, y)|(x, y) ∈ X ×Y }
measuring the relation between color and gender has the following form

X/Y 0 1

R =

0

1

2


0.05 0.3

0.2 0.15

0.15 0.15


where we have coded the categories of X by 0, 1 and 2, and the categories of Y by 0 and 1. In

this example we are assuming that pR(x, y) gives the joint probability of occurrence of category

x of X and y of Y . It follows that pÃX
R

(x) =
∑

y∈Y pR(x, y) and pÃY
R

(y) =
∑

x∈X pR(x, y) give

the marginal probabilities of X and Y .

As stated in the previous section, we measure the degree of association between X and Y

by using ρR(X,Y ). This measure is equal approximately to 0.026, 0.125 and 0.016 if one uses

the variability measure v2k,s(Ã), D2,k(Ã, M̃) and dk(Ã, M̃) to compute ρR(X,Y ). The values of

ρR(X,Y ) show that there is a weak association between the two variables X and Y . This is the

result of a high variability in the single variables X and Y . The three measures of variability

described in Section 3 are equal respectively to 0.996, 0.950 and 0.998 for the variable X, and

0.952, 0.800, 0.971 for the variable Y .

Note that when the joint probabilities are all equal to 1
kXkY

= 1
6 , the measure ρR(X,Y ) takes

the value of zero. In this particular case, these probabilities can be computed assuming that the

marginal probabilities are equally distributed between each category of the same variable and

that X and Y are independent variables.

In general, given two multinomial random variables X = (X0, X1, . . . , XkX−1) with param-

eter p = (p0, p1, . . . , pkX−1) and Y = (Y0, Y1, . . . , YkY −1) with parameter q = (q0, q1, . . . , qkY −1)

we can measure the variability of the single variables by using one of the variability measures

in Definition 3.4 and we can measure the degree of the association between these two random

variables using our measure ρR(X,Y ).
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6 Conclusions

We have proposed a link between the variability of categorical data and the degree of fuzziness of

fuzzy sets. We have also proposed different properties a variability and an association measure

should satisfy. The measures of variability and association for categorical data are of easy

application. Overall, we believe our suggestions will improve the understanding of the concepts

of variability and association applied to categorical variables.
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