A multi-temperature formal hydrodynamic limit of kinetic equations, based on Grad-type approximation of the distribution functions, is employed for the analysis of the steady shock problem in a binary mixture. The presence of a singular barrier and its effects on the occurrence of either smooth profiles or of weak solutions with a discontinuity is investigated for varying Mach number. Some numerical simulations of mixtures of two noble gases are presented and commented on, with reference also to analogous phenomena in different model descriptions.

Shock wave structure of multi-temperature Grad 10-moment equations for a binary gas mixture / Bisi, M.; Groppi, M.; Macaluso, A.; Martalò, Giorgio. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - 133:(2021), p. 54001. [10.1209/0295-5075/133/54001]

Shock wave structure of multi-temperature Grad 10-moment equations for a binary gas mixture

Bisi, M.;Groppi, M.;Martalò, Giorgio
2021-01-01

Abstract

A multi-temperature formal hydrodynamic limit of kinetic equations, based on Grad-type approximation of the distribution functions, is employed for the analysis of the steady shock problem in a binary mixture. The presence of a singular barrier and its effects on the occurrence of either smooth profiles or of weak solutions with a discontinuity is investigated for varying Mach number. Some numerical simulations of mixtures of two noble gases are presented and commented on, with reference also to analogous phenomena in different model descriptions.
2021
Shock wave structure of multi-temperature Grad 10-moment equations for a binary gas mixture / Bisi, M.; Groppi, M.; Macaluso, A.; Martalò, Giorgio. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - 133:(2021), p. 54001. [10.1209/0295-5075/133/54001]
File in questo prodotto:
File Dimensione Formato  
Bisi_2021_EPL_133_54001.pdf

non disponibili

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 862.83 kB
Formato Adobe PDF
862.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
G42906_final_version.pdf

Open Access dal 02/05/2022

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2891654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact