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Shock wave structure of multi-temperature Grad 10-moment
equations for a binary gas mixture

M. Bisi1, M. Groppi1, A. Macaluso1 and G. Martalò1

1 Department of Mathematical, Physical and Computer Sciences, University of Parma - Parco Area delle Scienze
53/A, I-43124 Parma, Italy

PACS 47.40.-x – Compressible flows; Shock waves
PACS 47.45.-n – Rarefied gas dynamics
PACS 47.27.ed – Dynamical systems approaches

Abstract – A multi-temperature formal hydrodynamic limit of kinetic equations, based on Grad
type approximation of the distribution functions, is employed for the analysis of the steady shock
problem in a binary mixture. The presence of a singular barrier and its effects on the occurrence
of either smooth profiles or of weak solutions with a discontinuity is investigated for varying Mach
number. Some numerical simulations of mixtures of two noble gases are presented and commented
on, with reference also to analogous phenomena in different model descriptions.

Introduction. – Multi-temperature models are be-
ing widely used in modeling and investigating inert and
reactive mixtures. They can be derived by methods of
Extended Thermodynamics [1–3], as well as from kinetic
equations by standard Chapman-Enskog asymptotic pro-
cedure in the regime of dominant intra-species collisions
[4, 5] and by Grad’s closures [6, 7].
A multi-temperature description is desirable in several
problems of aerothermodynamics [8] and plasma physics
[9] at high temperature, especially for gas mixtures whose
components have very disparate masses (e.g positive ions
and electrons [10]). In such mixtures, sometimes called
ε−mixtures [11], energy exchanges between light and
heavy components turn out to be slower than the ones
within each component or between constituents with com-
parable masses.
At fluid-dynamic level, this two-scale interaction process
is well described by equations involving a large set of vari-
ables, which includes the main distinctive macroscopic
fields of each component. Therefore, the resulting model
is of multi-velocity and multi-temperature type.
Results from Rational Thermodynamics however show
that there are some specific physical scenarios in which
the relaxation of species mean velocities is faster than for
species temperatures [12]. In this paper we consider a
single velocity and multi-temperature model to describe a
physical situation in which the species velocities have al-
ready reached a common value (corresponding to the mean

velocity of the whole mixture) while the species temper-
atures are still well separate. This model is formally ob-
tained starting from a kinetic description, by replacing the
distribution functions with suitable Grad approximations
[6, 7] and assuming that species velocities share the same
value.
We aim at testing such model on the classical problem
of shock wave structure. The subject is topical and sev-
eral interesting results on the occurrence of a smooth so-
lution or on the presence of discontinuities (subshocks)
have been proposed [13–17], especially for multi-velocity
and multi-temperature Euler-like systems [3, 18, 19] and
Grad 10-moment equations [6, 7]. Since fifties [20] it is
well known that, even for a single gas, shock wave for-
mation is not accurately described by Navier-Stokes equa-
tions, and higher order closures, as Burnett [21] or Grad
equations [22], are desirable. The mathematical structure
of Grad equations provides the occurrence of non-physical
sub-shocks , namely of discontinuous shock wave solutions,
for high Mach numbers, and suitable regularizations have
been proposed to prevent these effects [23]. For a gas mix-
ture the situation is much more involved, due to the pos-
sible presence of more critical values of the system param-
eters, corresponding to discontinuities in the shock wave
profiles [6, 7]. Here, we want to discuss the effects of a
single velocity formulation on the shock profiles, by in-
vestigating strong and weak solutions and the presence of
singular barriers [24] separating the limiting equilibrium
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states, and compare them with results obtained for multi-
velocity models [6, 7, 18]. The analysis is performed for
varying Mach number.
We use typical tools of the qualitative theory of dynami-
cal systems for the construction of both strong and weak
solutions, starting from the local stability properties of
asymptotic equilibria. Some numerical tests confirm the
theoretical results in the case of binary mixtures of no-
ble gases. The role of particle masses is discussed, focus-
ing the attention on overshooting phenomena in tempera-
tures profiles and on the trends of viscous stress tensors,
representing the additional Grad corrections to classical
Navier-Stokes equations.

The mathematical formulation. – The starting
point is a fluid dynamic model for the main macroscopic
fields of a binary gas mixture, obtained as formal hydro-
dynamic limit of a kinetic description. Besides classical
Euler and Navier-Stokes closures, Grad provided a suit-
able approximation of the kinetic distribution function,
which led to an alternative closed set of consistent balance
equations [25]. More precisely, Grad’s closure procedure
consists in replacing the species distribution functions in
the kinetic description by truncated Hermite polynomial
expansions around local Maxwellians, yielding a system
of evolution equations for 13 moments of the distribution
function of each component: number density ni, mass ve-
locity ui, temperature Ti, viscous stress σi and heat flux
qi (i = 1, 2). Under suitable hypotheses, such technique
can be generalized to derive different fluid dynamic de-
scriptions involving a smaller or greater number of macro-
scopic fields [26–28].
In particular, in this paper we consider a macroscopic clo-
sure which takes into account only moments of the dis-
tribution functions up to second order [29,30]; the result-
ing 10 moment equations, useful to model the flow in or
around micro-electro-mechanical systems [31], can be seen
as a proper subsystem of the 13 moment Grad closure,
under the assumption of vanishing heat fluxes. Assuming
cylindrical symmetry around the x−axis for the distribu-
tion functions and Maxwell molecules interaction poten-
tial, the following one dimensional set of equations for a
binary gas mixture is obtained [6]

∂t (ni) + ∂x (niui) = 0 , i = 1, 2

∂t (miniui) + ∂x
(
miniu

2
i + niTi + σi

)
= Ri

∂t

(
1

2
miniu

2
i +

3

2
niTi

)
+ ∂x

[(
1

2
miniu

2
i +

5

2
niTi + σi

)
ui

]
= Si + uiRi

∂t

(
2

3
miniu

2
i + σi

)
+ ∂x

[(
2

3
miniu

2
i +

4

3
niTi +

7

3
σi

)
ui

]
= Vi +

4

3
uiRi ,

(1)

where t is the time variable, x is the 1-D space variable, mi

is the particle mass and the macroscopic fields are now ap-
propriate scalar functions of space and time variables. The
source terms on the right-hand side, describing momentum
and energy exchanges between different components, keep
trace of the kinetic model and of the interaction potential,
and are given by

Ri =

2∑
j=1

ν
(1)
ij µijninj (uj − ui)

Si = 2ni

2∑
j=1

ν
(1)
ij µij

mi +mj
nj

[
3

2
(Tj − Ti) +

1

2
mj (uj − ui)2

]

Vi =

2∑
j=1

2ν
(1)
ij µij

mi +mj

[
2

3
mjnjni (uj − ui)2 + niσj − njσi

]

−
2∑

j=1

3ν
(2)
ij mj

2 (mi +mj)
2

[
2

3
mjnjmini (uj − ui)2

+miniσj +mjnjσi

]
,

(2)
where µij = mimj/(mi + mj) is the reduced mass and

ν
(k)
ij , i, j, k = 1, 2, which represent moments of order 1

and 2 of the collision frequencies appearing in Boltzmann
operators, are constant in the case of Maxwell molecule
interaction potential (with the natural simmetry property

ν
(k)
12 = ν

(k)
21 , k = 1, 2). Contributions Ri, Si, Vi have been

computed as suitable moments of bi-species Boltzmann
collision operators, using Grad approximation for distri-
bution functions.
Here, we reduce to the case of a single velocity model,
assuming that species velocities share the same value
(u1 = u2 = u, where u is the mixture mean velocity).
We obtain a set of 7 independent equations, that may be
cast in an equivalent way as

∂t (n1) + ∂x (n1u) = 0

∂t (n2) + ∂x (n2u) = 0

∂t (ρu) + ∂x
(
ρu2 + nT + σ

)
= 0

∂t

(
1

2
ρu2 +

3

2
nT

)
+ ∂x

[(
1

2
ρu2 +

5

2
nT + σ

)
u

]
= 0

∂t

(
1

2
m1n1u

2 +
3

2
n1T1

)
+ ∂x

[(
1

2
m1n1u

2 +
5

2
n1T1 + σ1

)
u

]
= S1

∂t

(
2

3
miniu

2 + σi

)
+ ∂x

[(
2

3
miniu

2 +
4

3
niTi +

7

3
σi

)
u

]
= Vi , i = 1, 2 ,

(3)
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where global macroscopic fields can be expressed in terms
of species variables as follows

n = n1 + n2 , ρ = ρ1 + ρ2 = m1n1 +m2n2

nT = n1T1 + n2T2 , σ = σ1 + σ2 ,
(4)

and the source terms reduce to

S1 = 3
ν
(1)
12

(m1 +m2)2
ρ1ρ2 (T2 − T1)

Vi = κji

[
2ν

(1)
ij κij (niσj − njσi)

− 3

2
ν
(2)
ij (κijniσj + κjinjσi)

]
− 3

4
ν
(2)
ii niσi ,

(5)

where i, j = 1, 2, i 6= j, and κij = mi/(mi + mj) is the
mass ratio.
The steady shock wave problem consists in finding the
space-dependent solution

ω̄(x) = (n1(x), n2(x), u(x), T1(x), T2(x), σ1(x), σ2(x))
(6)

of the steady version of (3)

d

dx
(n1u) = 0

d

dx
(n2u) = 0

d

dx

(
ρu2 + nT + σ

)
= 0

d

dx

[(
1

2
ρu2 +

5

2
nT + σ

)
u

]
= 0

d

dx

[(
1

2
m1n1u

2 +
5

2
n1T1 + σ1

)
u

]
= S1

d

dx

[(
2

3
miniu

2 +
4

3
niTi +

7

3
σi

)
u

]
= Vi , i = 1, 2 ,

(7)

such that

lim
x−→±∞

ω̄(x) = ω̄± , lim
x−→±∞

dω̄

dx
(x) = 0 , (8)

where ω̄± are two given equilibria of the system (7) (corre-
spondingly, at the kinetic level they would give the macro-
scopic moments of the equilibrium Maxwellians at ±∞).
Equilibria are characterized by a common value of the
species temperatures, coinciding with the mixture tem-
perature from (4), and vanishing viscous stresses, i.e.

ω̄ = (n1,±, n2,±, u±, T±, T±, 0, 0) . (9)

The two equilibria satisfy the Rankine-Hugoniot condi-
tions of the equilibrium subsystem, which consists in a
set of conservation equations and coincides with the Euler
equations for a mixture as a whole. More precisely, we
have [32]

ni+ =
4M2

M2 + 3
ni− , i = 1, 2 , u+ =

M2 + 3

4M2
u−

T+ =
(M2 + 3)(5M2 − 1)

16M2
T− ,

(10)
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Fig. 1: Eigenvalues of the Jacobian matrix associated to (23)
versus Mach number evaluated at ω = ω− (left panel) and at
ω = ω+ (right panel) for the mixture of the reference case (25).

where M =
√

3ρ−u2−/(5n−T−) is the Mach number eval-

uated at −∞, and we consider the supersonic regime
M > 1.

Shock wave solutions. – We can rewrite the system
(7) by using the conservation equations to express part of
the macroscopic fields in terms of the remaining ones. In
particular, after a suitable change of variables

(T1, T2) −→ (T, θ) =

(
n1T1 + n2T2

n
, T2 − T1

)
, (11)

we consider ω = (u, θ, σ2) as the set of independent vari-
ables; the other macroscopic fields are given by

n1 =
J1
u
, n2 =

J2
u

T =
2

3

J4 − J3u
J1 + J2

+
1

3

m1J1 +m2J2
J1 + J2

u2

σ1 = −2J4 − 5J3u

3u
− 4

3
(m1J1 +m2J2)u− σ2 ,

(12)

where
J1 = n1−u− , J2 = n2−u−

J3 = ρ−u
2
− + n−T−

J4 =

[
1

2
ρ−u

2
− +

5

2
n−T−

]
u− .

(13)

The system (7) can be rewritten in compact form as

A
dω

dx
= G , (14)

where G = (S1, V1, V2), with S1, V1 and V2 expressed in
terms of ω; the entries of the matrix A = A(ω) are not
reported here for brevity.
Some algebra allows to compute the determinant

det(A) =
9

2

J1J2
n

[
−ρu2 + 3 (nT + σ)

]
, (15)
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whose sign obviously depends on the sign of

B(ω) = −ρu2 + 3(nT + σ) , (16)

which individuates the so-called singular barrier. Geo-
metrically, in the space Ω spanned by (u, θ, σ2), this term
determines a surface Ω0 defined by B(ω) = 0 and a parti-
tion

Ω = Ω− ∪ Ω0 ∪ Ω+ , (17)

where

Ω± = {ω ∈ Ω | B(ω) ≷ 0} . (18)

We can observe that

B(ω−) = −5

3
n−T−

(
M2 − 9

5

)
≷ 0 iff M ≶

√
9

5
,

B(ω+) =
10

3
n−T−

(
M2 − 3

5

)
> 0 ∀M > 1 ,

or, equivalently,

ω− ∈ Ω± if and only if M ≶

√
9

5
,

ω+ ∈ Ω+ ∀M > 1 .

It is easy to notice that, when M >
√

9/5, the two asymp-
totic states belong to different subsets of Ω (ω− ∈ Ω−,
ω+ ∈ Ω+). In this case, we cannot connect the two states
at ±∞ by a continuous profile, since it should cross Ω0 at
least in a point (and hence a singularity should intervene).
When M <

√
9/5, both equilibria belong to Ω+; in this

case, a continuous solution could be obtained connecting
the two limiting configurations.
The critical Mach number M∗ =

√
9/5 corresponds to the

critical value

u∗ =
3

4

J3
m1J1 +m2J2

(19)

for the mean velocity u, and we can observe that

u+ < u− < u∗ for M < M∗ ;

u+ < u∗ < u− for M > M∗ .

As already observed above, when M > M∗, the solution
for u cannot be continuous due to the singularity occurring
for u = u∗.
When a discontinuity occurs for M > M∗, we look for a
weak piecewise smooth solution with a jump in some point
x0, fulfilling equations (7). We notice that, since the right-
hand side contributions in the balance equations in (7) are
bounded functions, those equations imply the continuity
of the terms under derivative operator across the jump. It
follows that we can express the configuration on the right
side of the jump ωR = (uR, θR, σ2R) in terms of the state
on the left side ωL = (uL, θL, σ2L); in particular, there are
two possible outputs for the right side configuration: the

continuous solution ωR = ωL and the discontinuous one
given by

uR =
3

2

J3
m1J1 +m2J2

− uL

θR = θL +
1

6

m2 −m1

m1J1 +m2J2
J3(uL − uR)

σ2R = σ2L
uL
uR

+
1

3

m2J2J3
m1J1 +m2J2

(
uL
uR
− 1

)
;

(20)

we notice that the temperature difference does not have a
discontinuity if the two components share the same mass.
We can observe also that across the jump

B(ωR) = −B(ωL) , (21)

hence the two states at left and right side of the jump,
belonging to disjoint components of the partition (17), are
characterized by the same magnitude of the term B.
In the particular case in which ωL = ω−, it is possible to
rewrite conditions (20) in terms of the asymptotic state
and of the Mach number as follows

uR =
5M2 + 9

10M2
u− < u−

θR =
1

6
(m2 −m1)

5M2 + 3

5M2

5M2 − 9

10M2
u2− > 0

σ2R =
1

3

5M2 + 3

5M2

5M2 − 9

5M2 + 9
ρ2−u

2
− > 0 .

(22)

We remark also that the unique critical value of Mach
number involves macroscopic fields of both components,
whose profiles exhibit a discontinuity at the same point
x0; this follows from the single velocity structure of equa-
tions. In fact, if we considered the complete structure
(1) with both species mean velocities, then we would ob-
serve the presence of two critical values for the Mach num-
ber and the occurrence of two separate singular barriers,
which introduce up to two separate discontinuities in the
shock profile, each of them involving only the macroscopic
moments of one of the two gas components. Moreover,
when the Mach number is between the two critical values,
macroscopic quantities of a species would have a continu-
ous profile, while those of the other constituent would be
discontinuous [6].

Numerical results. – The system (7) can be rewrit-
ten in the normal form dω/dx = A−1G, namely

du

dx
=
V1 + V2
B

dθ

dx
= −14

27

n

n1n2u
S1 +

2

9

n

n1n2uB
(V1B2 − V2B1)

dσ2
dx

=
8

27u
S1 +

5

9u
V2 −

V1 + V2
uB

(
σ2 +

4

9
ρ2u

2

)
,

(23)

when the matrix A is not singular, i.e. in any subset of
the x−line where the solution is regular. Terms

Bi(ω) = −ρiu2 + 3
ni
n

(nT + σ) , i = 1, 2 , (24)
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Fig. 2: Profiles of normalized species densities (panel (a)),
global mean velocity (panel (b)), species temperatures (panel
(c)) and species viscous stresses (panel (d)) versus space vari-
able x in the reference case (25) when M = 1.1.
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Fig. 3: Profiles of normalized species densities (panel (a)),
global mean velocity (panel (b)), species temperatures (panel
(c)) and species viscous stresses (panel (d)) versus space vari-
able x in the reference case (25) when M = 1.3.
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Fig. 4: Profiles of normalized species densities (panel (a)),
global mean velocity (panel (b)), species temperatures (panel
(c)) and species viscous stresses (panel (d)) versus space vari-
able x in the reference case (25) when M = 1.4.
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Fig. 5: Profiles of normalized species densities (panel (a)),
global mean velocity (panel (b)), species temperatures (panel
(c)) and species viscous stresses (panel (d)) versus space vari-
able x in the reference case (25) when M = 1.6.

are such that B = B1 + B2.
For such system, we use typical tools of the qualitative the-
ory of dynamical systems to build up the shock solution
in mixtures of noble gases. More precisely, we investigate
numerically the stability of asymptotic equilibria and get
some information about their stable and unstable mani-
folds.
We fix a reference case [2, 18] by considering a mixture
of Helium (species 1) and Argon (species 2) (m1 < m2,
m1/m2 ' 0.1002) at 40◦C with concentrations at −∞

n1−/n− = 0.753 , n2−/n− = 0.247 , (25)

respectively, and mean velocity at −∞ obtained by the
definition of Mach number (u− =

√
5n−T−M2/(3ρ−)).

The constant collision frequencies are obtained by follow-
ing the approach proposed in [33] and using the numerical
values given in [34] for the considered mixture; in partic-
ular, we fix the non-dimensional frequencies as follows

ν
(1)
11 = 2.3635 , ν

(1)
22 = 2.0501 , ν

(1)
12 = 1.7770

ν
(2)
11 = 1.8908 , ν

(2)
22 = 1.6401 , ν

(2)
12 = 1.4216 .

(26)

As shown in Figure 1 (left panel), when M < M∗ the
Jacobian matrix associated to (23) evaluated at −∞ has
two negative eigenvalues and one positive eigenvalue, that
diverges to ∞ as M −→ M∗. Therefore, the equilibrium
ω− is a saddle; the unstable and stable manifolds have
dimension 1 and 2, respectively.
When M > M∗, the equilibrium is asymptotically stable,
since all the eigenvalues are negative; the stable manifold
has dimension 3 and no unstable manifold is present.
As concerns the equilibrium ω+, it is asymptotically sta-
ble for any M > 1 and the stable manifold has dimension
3 (see the right panel of Figure 1).
When M < M∗, it is possible to connect the saddle ω− to
the asymptotically stable equilibrium ω+ through a hete-
roclinic orbit, obtained following the one dimensional un-
stable manifold tangent to the one dimensional unstable
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eigenspace at −∞. This smooth trajectory connecting the
two limiting configurations in our study case is shown in
Figures 2 and 3 for M = 1.1, 1.3, respectively (the profiles
are normalized with respect to the equilibrium values n−,
u−, T− and translated to have u(0) = (u− + u+)/2).
When M > M∗, both equilibria are asymptotically sta-
ble; then no smooth heteroclinic orbit between the two
asymptotic states is allowed. The only admissible shock
profile is a weak solution. In particular, the only way to
satisfy the limiting condition at −∞ is to consider a con-
stant solution ω = ω−; then a jump, fulfilling conditions
(22), intervenes and the smooth trajectory starting from
ωR is asymptotically attracted by ω+ (see Figures 4 and
5 for M = 1.4, 1.6, respectively). The profiles are plotted
with the discontinuity at x = 0.
We can observe that, for increasing Mach number, the
transition from the stationary point ω− to the equilib-
rium ω+ is more and more steep, and the shock profiles
for mean velocity and species temperature exhibit a fast
decrease/increase, respectively (see for example panels (b)
and (c) in Figure 3). This rapid transition implies a very
evident overshooting of the heaviest species temperature,
already slightly present for M = 1.1 (see panel (c) in Fig-
ure 2), and a more significant deviation from vanishing
viscous stress for such component (see also panel (d) in
Figure 3). This behavior is more and more evident for
high values of the Mach number, both for temperature and
viscous stress (see panels (c) and (d) in Figures 4 and 5).
In this analysis, a key role is played by the ratio of particle
masses m1/m2 < 1, especially for what regards the tem-
perature overshooting and the deviation of viscous stress
from the null equilibrium value.
We consider now two different mixtures of noble gases:
the first one is composed by Neon and Argon with par-
ticle masses of the same order (m1/m2 ' 0.5051); the
second one is a mixture of Helium and Xenon, and hence
with very disparate masses (m1/m2 ' 0.0305).
In both cases, as well as in the case of a mixture of He-
lium and Argon, the eigenvalues of the jacobian matrix in
the limiting configurations are real and the stable and un-
stable manifolds have the same dimension as above. One
of the main differences concerns the behavior of species
temperatures; in fact, when masses are of the same order,
species temperature profiles do not reach values signifi-
cantly higher than the equilibrium value T+ at +∞ (we
only observe a slight overshooting of the second compo-
nent temperature for M = 1.6 in Figure 6 top right);
moreover, the two profiles are closer to each other than
in the reference case (see first row in Figure 6), suggest-
ing that a hydrodynamic description involving only the
mixture temperature in this case could be sufficiently ac-
curate to approximate the behavior of both components.
In the limit case m1/m2 = 1 the case of a single gas can
be reproduced, since the two identical components share
the same profile of mean velocity and temperature, which
coincide with the profiles of global quantities.
When particle masses are very disparate, the temperature

Fig. 6: Profiles of normalized species temperatures (first row),
temperature difference (second row) and viscous stresses (third
row) for a mixture of Neon and Argon for M = 1.3 (left col-
umn) and M = 1.6 (right column).

overshooting is more evident (see first row in Figure 7). In
this case, a multi-temperature description is more suited
to well catch the discrepancy between components, since
the profile of the mixture temperature could not approxi-
mate accurately the species ones.
As concerns the viscous stress, we can notice that the de-
viation from the null equilibrium value is strictly related
to temperatures behavior, and the maximum is reached
in correspondence of the highest value of temperature dif-
ference (see second and third rows in Figures 6 and 7).
Moreover, when component masses are comparable, the
two species viscous stresses are of the same order of mag-
nitude, while the stress of the heavy constituent is signif-
icantly higher than the light species one when masses are
very disparate.

Conclusions. – In this work we investigated the
shock wave structure solution in a Grad 10-moment model
with a single velocity.
We have observed that the assumption of a common value
for species velocities leads to a different scenario, with
respect to the one involving multi-velocity equations [6].
The absence of momentum exchanges and the presence of
energy exchanges due to thermal effects imply only a par-
tial distinction between components; in fact, the species
singular barriers of multi-velocity and multi-temperature
models [3,6,7,18] here relax to a single barrier, depending
on global macroscopic fields (density, mean velocity, tem-
perature and viscous stress of the mixture as a whole).
The role of the singular barrier Ω0, which introduces a
proper partition of the physical space Ω, has been explic-
itly analyzed. If the limiting asymptotic equilibria ω± be-
long to disjoint subsets of Ω, then only a piecewise smooth
solution can connect the two states and an appropriate
discontinuity fulfilling the balance equations appears. On
the other hand, when ω± belong to the same subset (in
particular ω± ∈ Ω+), then a classical smooth solution can
be built up, and ω+ can be reached asymptotically from
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Fig. 7: Profiles of normalized species temperatures (first row),
temperature difference (second row) and viscous stresses (third
row) for a mixture of Helium and Xenon for M = 1.3 (left
column) and M = 1.6 (right column).

ω− moving along the heteroclinic orbit connecting the two
equilibria in the phase space.
The theoretical results have been confirmed by simulating
binary mixtures of noble gases. The role of particle mass
ratiom1/m2 has been discussed, by remarking the very ev-
ident temperature overshooting when particle masses are
very disparate, as well as the different order of magnitude
of species viscous stresses, and suggesting again the ne-
cessity of a large set of hydrodynamic fields in presence of
ε−mixtures of heavy and light components [11]. On the
contrary, when masses are comparable, temperature pro-
files do not overshoot the equilibrium value T+ and the
species macroscopic quantities are very close to each other,
suggesting that a single temperature model is sufficiently
accurate to describe the shock wave structure problem.
Finally, it is worth noting that the occurrence of temper-
ature overshooting phenomena has been observed exper-
imentally in shock wave formation and combustion prob-
lems [2, 35,36].
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Theor., - (2021) 1-19. DOI: https://doi.org/10.1088/1751-
8121/abbd1b.

[6] Bisi M., Conforto F. and Martalò G., Continuum
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