When subjected to cyclic loading, complete contacts with à la Coulomb friction may sometimes develop a favourable situation where slips cease after a few cycles, an occurrence commonly known as frictional shakedown. However, if the amplitude of the cyclic load is greater than a so-called shakedown limit, the system is unable to adapt and indefinitely persists in a dissipative state. In this paper, we present a comprehensive theoretical and numerical analysis of the shakedown in three-dimensional elastic systems with conforming frictional interfaces. In a discrete framework, the limit states of the frictional system are investigated through two distinct approaches: incremental analysis based on a novel Gauss–Seidel algorithm, which allowed us to explore the whole transient response under a given cyclic loading scenario, and a linear optimisation algorithm to directly determine the stick and shakedown limits. Illustrative examples, ranging from a single-node model to multi-node systems with both coupled and uncoupled contacts, are discussed.

A numerical study on frictional shakedown in large-scale three-dimensional conforming elastic contacts / Spagnoli, A.; Beccarelli, G.; Terzano, M.; Barber, J. R.. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. - ISSN 0020-7683. - 217-218(2021), pp. 1-14. [10.1016/j.ijsolstr.2021.01.024]

A numerical study on frictional shakedown in large-scale three-dimensional conforming elastic contacts

Spagnoli A.
;
Terzano M.;
2021

Abstract

When subjected to cyclic loading, complete contacts with à la Coulomb friction may sometimes develop a favourable situation where slips cease after a few cycles, an occurrence commonly known as frictional shakedown. However, if the amplitude of the cyclic load is greater than a so-called shakedown limit, the system is unable to adapt and indefinitely persists in a dissipative state. In this paper, we present a comprehensive theoretical and numerical analysis of the shakedown in three-dimensional elastic systems with conforming frictional interfaces. In a discrete framework, the limit states of the frictional system are investigated through two distinct approaches: incremental analysis based on a novel Gauss–Seidel algorithm, which allowed us to explore the whole transient response under a given cyclic loading scenario, and a linear optimisation algorithm to directly determine the stick and shakedown limits. Illustrative examples, ranging from a single-node model to multi-node systems with both coupled and uncoupled contacts, are discussed.
A numerical study on frictional shakedown in large-scale three-dimensional conforming elastic contacts / Spagnoli, A.; Beccarelli, G.; Terzano, M.; Barber, J. R.. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. - ISSN 0020-7683. - 217-218(2021), pp. 1-14. [10.1016/j.ijsolstr.2021.01.024]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2889865
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact