When subjected to cyclic loading, complete contacts with à la Coulomb friction may sometimes develop a favourable situation where slips cease after a few cycles, an occurrence commonly known as frictional shakedown. However, if the amplitude of the cyclic load is greater than a so-called shakedown limit, the system is unable to adapt and indefinitely persists in a dissipative state. In this paper, we present a comprehensive theoretical and numerical analysis of the shakedown in three-dimensional elastic systems with conforming frictional interfaces. In a discrete framework, the limit states of the frictional system are investigated through two distinct approaches: incremental analysis based on a novel Gauss–Seidel algorithm, which allowed us to explore the whole transient response under a given cyclic loading scenario, and a linear optimisation algorithm to directly determine the stick and shakedown limits. Illustrative examples, ranging from a single-node model to multi-node systems with both coupled and uncoupled contacts, are discussed.
A numerical study on frictional shakedown in large-scale three-dimensional conforming elastic contacts / Spagnoli, A.; Beccarelli, G.; Terzano, M.; Barber, J. R.. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. - ISSN 0020-7683. - 217-218:(2021), pp. 1-14. [10.1016/j.ijsolstr.2021.01.024]
A numerical study on frictional shakedown in large-scale three-dimensional conforming elastic contacts
Spagnoli A.
;Terzano M.;
2021-01-01
Abstract
When subjected to cyclic loading, complete contacts with à la Coulomb friction may sometimes develop a favourable situation where slips cease after a few cycles, an occurrence commonly known as frictional shakedown. However, if the amplitude of the cyclic load is greater than a so-called shakedown limit, the system is unable to adapt and indefinitely persists in a dissipative state. In this paper, we present a comprehensive theoretical and numerical analysis of the shakedown in three-dimensional elastic systems with conforming frictional interfaces. In a discrete framework, the limit states of the frictional system are investigated through two distinct approaches: incremental analysis based on a novel Gauss–Seidel algorithm, which allowed us to explore the whole transient response under a given cyclic loading scenario, and a linear optimisation algorithm to directly determine the stick and shakedown limits. Illustrative examples, ranging from a single-node model to multi-node systems with both coupled and uncoupled contacts, are discussed.File | Dimensione | Formato | |
---|---|---|---|
numerical.pdf
solo utenti autorizzati
Tipologia:
Versione (PDF) editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.88 MB
Formato
Adobe PDF
|
3.88 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
A numerical study on frictional shakedown (1).pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
6.89 MB
Formato
Adobe PDF
|
6.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.