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Abstract

When subjected to cyclic loading, complete contacts with à la Coulomb friction may sometimes

develop a favourable situation where slips cease after a few cycles, an occurrence commonly known as

frictional shakedown. However, if the amplitude of the cyclic load is greater than a so-called shakedown

limit, the system is unable to adapt and indefinitely persists in a dissipative state. In this paper, we

present a comprehensive theoretical and numerical analysis of the shakedown in three-dimensional elastic

systems with conforming frictional interfaces. In a discrete framework, the limit states of the frictional

system are investigated through two distinct approaches: incremental analysis based on a novel Gauss-

Seidel algorithm, which allowed us to explore the whole transient response under a given cyclic loading

scenario, and a linear optimisation algorithm to directly determine the stick and shakedown limits.

Illustrative examples, ranging from a single-node model to multi-node systems with both coupled and

uncoupled contacts, are discussed.
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1. Introduction

Engineering systems often comprise several parts interacting through frictional contact, some of which

are subjected to a combination of a static load and time varying cyclic actions, e.g due to vibrations or

temperature fluctuations (Andresen et al., 2019). As a consequence of these actions, contacts experience

frictional slip in terms of small relative tangential displacements along the contact interface, whose effect

on the performance of the engineering part is usually detrimental. Fretting fatigue, for instance, is the

well-known damage process resulting from zones of micro-slip between contacting interfaces, which leads

to the initiation of cracks, thereby significantly reducing the service life of components (Nowell et al.,

2006; Majzoobi and Abbasi, 2017). A particularly amenable condition is known from the theory of

plasticity: it may happen that, after a certain number of cycles in which the system shows an inelastic

response, the behaviour in the subsequent loading cycles becomes purely elastic (König and Maier,

1981). This condition of adaptation goes under the name of shakedown. A similar phenomenon has

been observed in assemblies comprising elastic components in mutual contact, following the analogy

between slips and plastic strains (Churchman et al., 2006; Antoni, 2017): after a transient response

where slip may develop along limited portions of the contact interface, a state of permanent stick with

non-dissipative behaviour is eventually attained. It is therefore of great importance to investigate such

a safe condition, commonly known as frictional shakedown (Carpinteri and Scavia, 1993; Churchman

and Hills, 2006).
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Conforming or complete contacts, i.e. those in which the contact area does not change in the presence

of applied loads or becomes smaller in case of receding contacts (Ahn and Barber, 2008), are preferably

avoided in engineering practice. Indeed, differently from incomplete contacts that have non-conforming

interfaces and smooth edges (Fleury et al., 2017), the presence of sharp features results in large stress

concentration. Due to the lack of closed-form solutions, complete contacts are typically studied through

a combination of numerical analyses and asymptotic methods (Flicek et al., 2015b). The response of

conforming contacts subjected to constant normal load and variable tangential forces has been analysed

in several geometries, including the notable cases of a rigid or elastic punch pressed onto an elastic half-

plane (Mugadu and Hills, 2003; Churchman and Hills, 2006) and the contact between circular interfaces

in pin-loaded lugs (Antoni, 2014). Evidences have been found showing that, under a combination

of constant and cyclic quasi-static loads, frictional shakedown might develop, an occurrence which is

prevented in incomplete contacts where micro-slips at the edges are almost always present. Known

exceptions are cases where an inclined oscillating force forms an angle with respect to the normal

to the contact plane smaller than the angle of friction, while the normal load is constant (Barber

et al., 2008). Following the traditional framework of limit analysis applied to elastic-plastic systems,

shakedown theorems for frictional contacts have been formulated in discrete and continuum problems

(Klarbring et al., 2007; Barber et al., 2008; Klarbring et al., 2017). In particular, the analogous of

Melan’s static theorem establishes a sufficient condition for shakedown based on the existence of a safe

residual slip distribution that prevents dissipation at all times during the steady state (Klarbring et al.,
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2007). Regretfully, Coulomb’s law, and more generally any pressure-dependent frictional formulation

with non-associated flow, limits the existence of such a theorem to cases in which the normality rule is

retained (Drucker, 1954). In complete contacts, this occurs when there is no coupling between normal

and tangential directions on the slip surface (Klarbring et al., 2007), so that the normal components can

be regarded as determined from equilibrium alone while the normality rule is respected on the tangential

plane (Michalowski and Mroz, 1978). In all other cases, the steady-state response depends on the initial

residual slip distribution (Ahn et al., 2008; Ahn, 2015). Melan’s theorem does not provide a sufficient

condition for shakedown in coupled systems; nevertheless, a necessary condition for shakedown can be

derived from shakedown theorems in non-associated plasticity (Maier, 1969; de Saxcé and Bousshine,

1998; Ponter, 2016), providing un upper-bound to the shakedown load (Björkman and Klarbring, 1987).

Besides, limit analysis theorems can be conveniently formulated as an optimization problem, in which

the objective function, usually represented by the variable load multiplier, is either minimised or max-

imised with respect to a finite set of unknowns and subjected to problem-specific constraints. In elastic

frictional systems, such an approach provides the load multipliers corresponding to the first violation of

the stick condition (the so-called stick limit) and to the shakedown condition (the frictional shakedown

limit). In the latter case, the optimal distribution of slips represents the unknowns of the problem.

Providing an efficient and time-saving approach with respect to cumbersome incremental procedures,

various optimisation algorithms developed in the framework of linear and non-linear programming have

been proposed (Flicek et al., 2015a; Spagnoli et al., 2017; Figueiredo and Borges, 2020).
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The purpose of our work is to present a comprehensive study of shakedown in three-dimensional

elastic systems with Coulomb’s friction, which received far less attention with respect to plane problems.

Indeed, the two-dimensional contact problem is piecewise linear with only backward or forward directions

for the frictional slip, whereas the three-dimensional counterpart results in a fully non-linear problem

(Cho and Barber, 1999). The aims of this paper are: (i) to analyse the occurrence of frictional limit states

in a simple one-node system (Klarbring, 1990) subjected to cyclic loading, and show how the shakedown

condition is affected by normal-tangential coupling; (ii) to present a linear programming algorithm which

enables a direct computation of stick and shakedown limits in three-dimensional frictional systems; (iii)

to compare the previous results with a novel efficient incremental algorithm based on Gauss-Seidel

method (Ahn and Barber, 2008). General loading scenarios, including a constant normal component

and cyclic tangential loads, in terms of either shear forces or bulk stresses, are applied to multi-node

systems. These include the case of a symmetric contact between two square blocks, with equal or

different elastic properties, and the problem of an elastic punch on an elastically similar half-space. The

final discussion provides an overall view and a critical analyses of the results, with the specific aim of

shedding light into the peculiarities of two- and three-dimensional problems.

2. Formulation of the three-dimensional contact problem

We consider a three-dimensional problem in which two elastic bodies Ω(j) ∈ R3, with j = 1, 2, are

put into contact at a certain period of time t = [0, T ], and let Γ(j) = ∂Ω(j) define the boundaries along

which suitable conditions are imposed (Klarbring, 1986). We can write Γ(j) = Γ
(j)
S ∪Γ

(j)
U ∪Γ

(j)
C , with the
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Figure 1. (a) Schematic figure of the three-dimensional contact between two linear elastic bodies, where the red

regions represent the conforming contact surfaces. (b) Contact tangential plane at a generic point x(j) ∈ Γ
(j)
C ,

with illustration of the general reference system (x1, x2, x3) and the local axes (t1, t2, n). 1-col figure

subscripts identifying regions where, respectively, applied tractions, displacements and potential contact

events during [0, T ] are prescribed. Furthermore, we assume that the contact regions are conforming

surfaces, with Γ
(1)
C = Γ

(2)
C (Fig. 1).

To introduce the constraints governing the two-body interaction, let us define the outward unit

normal vector n(j), the displacement vector u(j) and the stress tensor σ(j) for each body. Under the
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assumption of conforming contact surfaces, for each point x(1) ∈ Γ
(1)
C a corresponding point x(2) ∈ Γ2

C

can be identified, according to the criterium of the nearest point to x(1) on Γ
(2)
C

1. In a contact point

x(j) ∈ Γ
(j)
C we can define relative normal and tangential displacements as follows

wn = −[u(1) · n(1) + u(2) · n(2)] (1a)

wt = u
(1)
t − u

(2)
t , with ujt = u(j) − (u(j) · n(j))n(j) (1b)

while contact stresses can be written as

rn = −n(j) · σ(j)n(j) (2a)

rt = σ
(1)
t = −σ(2)

t , with σ
(j)
t = σ(j)n(j) − rnn(j) (2b)

where we have considered the normal component rn to be positive if compressive; t, n are employed to

denote the tangential plane and the normal direction to the contact surface, respectively. Finally, with

1As sketched in Fig. 1a, conforming contact surfaces might include the case where a concave surface is in contact with
a convex counterpart, subject only to the requirement that nearest points on the two surfaces share the same curvature;
such a case would include the limiting one of planar contact where the curvatures tend to zero.
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the hypothesis of small displacements, in the contact region we have n(1) ≈ −n(2) ≡ n and find

w = wt + wnn, wt · n = 0 (3a)

r = rt − rnn, rt · n = 0 (3b)

In the present work, we further restrict our attention to complete contacts, that is those in which

the contact domain Γ
(j)
C is known and separation is prevented at all times in [0, T ], i.e. (Klarbring et al.,

2007)

wn = 0, rn ≥ 0 (4)

The problem’s formulation is completed with the usual balance laws, the constitutive equation for

a linear elastic material and prescribed boundary conditions (refer to Klarbring (1986) for a detailed

presentation). In particular, the boundary conditions in our problems are taken as

u(2) = ū(2) in Γ
(2)
U , for all t ∈ [0, T ] (5a)

σ(j)n(j) = s̄(j) in Γ
(j)
S , for all t ∈ [0, T ] (5b)

where ū(2) denote the initial conditions imposed on body two and s̄(j) are external tractions. The loading

regime is comprised of a constant part and a time-variable component, which can be expressed by the
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resultant of the applied forces as

F (t) = Fo + λFc(t) (6)

where λ is a positive load multiplier and the subscripts o and c denote, respectively, the static and cyclic

parts of the force vector.

2.1. Coulomb’s friction law

To present the mathematical formulation of Coulomb’s friction law, we introduce the coefficient of

friction f and specify an additional constraint to the previous conditions of Eq. (4), namely

‖rt‖ ≤ frn (7)

and

ẇt = −γ̇rt, where


γ̇ = 0, if ‖rt‖ < frn

γ̇ ≥ 0, if ‖rt‖ = frn

(8)

where γ̇ is a non-negative multiplier rate and ẇt is the time derivative of the tangential contact dis-

placement, that is, the slip rate.

Equation (7) requires the magnitude of the tangential stress vector not to exceed the contact pressure

multiplied by the coefficient of friction. Namely, the contact stresses must belong to the so-called

Coulomb cone of friction, whose axis is coincident with the positive axis of the normal contact reaction

rn, with the apex lying at rn = 0 (Fig. 2). On the other hand, Eq. (8) defines the limit condition:
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it specifies that the tangential slip ẇt is identically zero when the tangential reaction rt is less than

the Coulomb limit, while when it is non-zero, its direction opposes the frictional reaction rt, whose

magnitude is then equal to frn. Coulomb’s law can also be presented in a rate formulation typical of

elasto-plastic constitutive laws (Michalowski and Mroz, 1978)

φ(rt, rn) = ‖rt‖ − frn ≤ 0 (9a)

ẇt = −γ̇ rt
‖rt‖

(9b)

γ̇φ = 0, γ̇ ≥ 0 (9c)

where φ is the so-called slip function and Eq. (9b) is the flow rule. It appears evident that Coulomb’s

law is non-associated, since the direction of the slip rate is defined by the tangential component of the

contact reaction. More correctly, we can say that the normality rule is satisfied by the slip rate and

the contact reactions in the tangential plane, but the set of admissible forces depends on the present

value of rn. This also means that, whenever we can consider the normal reaction independent on slip,

that is to say, when the normal reaction is determined by the sole equilibrium with external loads, the

normality rule applies (Michalowski and Mroz, 1978). This is the concept behind the extension of limit

analyses theorems to frictional problems (Klarbring et al., 2007, 2017).
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Figure 2. Coulomb’s friction cone in three-dimensions, with rn > 0 when compressive. The red arrow
represents the limit state in a generic point, i.e. when ‖rt‖ = frn. Projections on the planes (t1, t2) and
(t1, n), displaying the slip vector ẇt, are shown. The latter, which also corresponds to Coulomb’s cone in
two-dimensional problems, shows the unit normal vector along the slip direction N̊k. A piecewise linearisation
of Coulomb’s friction cone with a circumscribed polyhedron, where each face is identified by the normal vector
Nk, is introduced for later use in the linear programming problem of Sect. 3. 2-col figure

2.2. Discretisation and condensation

For later use, we introduce a discretisation of the problem illustrated in Fig. 1a (for instance, by using

the finite element method). Let us assume that one of the conforming contact surfaces Γ
(j)
C comprises

N nodes in potential contact and collect relative displacements and contact reactions in ordered arrays

as follows (refer to the local reference system as shown in Fig. 1b)

w = [wt1 wt2 wn]T , r = [rt1 rt2 rn]T (10)

By a standard static condensation procedure (Thaitirarot et al., 2014), we can eliminate the dis-
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placements associated with the internal nodes and write the reaction forces in the form

r(t) = re(t) + κw(t) (11)

where κ is a reduced contact stiffness matrix that is symmetric and positive semi-definite. In Eq.

(11), re(t) are the generally time-varying reaction forces that would be generated at the contact nodes

by external loads if displacements at these nodes were constrained to be zero. The remaining term

represents instead the modification to contact reactions resulting from slips. The solution of the discrete

contact problem consists in finding the time evolution of w = w(t) and r = r(t) for the given history

of external loading, Eq. (6).

2.3. Frictional shakedown

Upon the application of the external loads in Eq. (6), it is assumed that the system response is

initially elastic and contact reactions follow an analogous time evolution, so that

re(t) = reo + λrec(t) (12)

After the limit condition of Coulomb’s friction law, Eqs. (7) and (9a), is achieved, frictional slips

develop at the contact interface according to the slip rule, Eqs. (8) and (9b). The system is further

submitted to cyclic loading with period Tc, such that the initial transient stage is followed by a cyclic

stage. A steady state is attained when, at a certain time instant t > 0, the system response becomes a
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periodic function with period equal to that of the external loading. In terms of contact reactions, such

a condition corresponds to r(t) = r(t+Tc), where these terms now also include an irreversible term due

to frictional slips. The system behaviour in the steady state depends on the evolution of slips: frictional

shakedown occurs when slips are confined to the transient stage while in the steady state the system

recovers an elastic response, with no energy dissipation. Mathematically, this corresponds to ẇt = 0

(Klarbring et al., 2017). The problem we are interested in is assessing the shakedown occurrence for a

given loading history. In other terms, we shall find the multiplier of variable loads λ, usually defined as

the shakedown limit, which discriminates between non-dissipative and dissipative states.

2.4. Contact coupling

The reduced stiffness matrix κ in Eq. (11) can be partitioned as follows

κ =

 κtt (κnt)
T

κnt κnn

 (13)

with

κtt =

 κt1t1 (κt2t1)
T

κt2t1 κt2t2

 , κnt =

[
κnt1 κnt2

]
(14)

where the main sub-matrices in Eq. (13) correspond to the following force-displacement relationships:

tangential-tangential κtt, normal-tangential κnt, normal-normal κnn.

The term κnt has traditionally been associated to contact coupling; more specifically, it quantifies the
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normal contact forces that are generated by tangential slip displacements (Flicek et al., 2017) and the

necessary and sufficient condition for an uncoupled contact is that κnt = 0. In more detail, Flicek et al.

(2017) proposed a metrics to estimate coupling in an aggregate sense, by looking at some properties of

contact stiffness submatrices. An alternative way to quantify coupling in a point-wise sense is by defining

a coefficient ranging from 0 to 1 (where zero means no coupling), as shown for instance in Klarbring

et al. (2007), where the maximum normal reaction force resulting from the set of all possible tangential

displacement distributions is considered. Peculiar to three-dimensional problems is coupling between

the tangential directions on the contact plane, controlled by the second level sub-matrix κt2t1 . The effect

of each term of the reduced stiffness matrix will be trivially explored on a single node system in Sect.

4. In multi-node systems (Sect. 5), normal-tangential coupling might arise from two sources, namely

material mismatch and domain mismatch. The former has been known for long in contact mechanics,

as it is related to the separation between tangential (normal) relative displacements and distributed

normal (tangential) tractions in the half-plane problem by Flamant (Barber, 2018). Domain mismatch

arises instead because the elasticity solutions are in different elastic domains due to the finite size of the

contacting bodies (Churchman and Hills, 2006). In practice, the only real case of perfect uncoupling

is between two elastically similar and symmetric bodies, as it will be shown in Sect. 5.1. A thorough

discussion of coupling is beyond the scope of our work; however, we shall spend a few more words on its

role with respect to the occurrence of shakedown in the next Section, and leave the interested reader to

the recent work by Flicek et al. (2017) on two-dimensional systems.
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3. The linear programming problem

The relevant problem of assessing the occurrence of shakedown can be conveniently formulated in

the framework of mathematical programming, taking advantage of the shakedown theorems for non-

associated flow rules (Maier, 1969; Klarbring, 1986). Following the classical arguments of limit analysis,

Klarbring et al. (2007) have proved a static theorem which provides a lower bound to the shakedown

limit whenever κnt = 0, based on the existence of a safe residual displacement distribution. Indeed,

this is the only case in which Coulomb’s flow rule becomes associated (see Sect. 2.1). In the general

scenario, there almost always exists a range of load multipliers λ for which the response of the system in

the steady state is affected by initial conditions. In this work, we shall always assume a null initial slip

distribution, i.e. w(t = 0) = 0. We here introduce the definition of limit load multipliers that will be

employed throughout the remaining part of our work. The information is summarised in the graphical

representation of Fig. 3.

• stick limit λ0: the load multiplier corresponding to the first violation of the stick condition;

• shakedown lower bound λ1: the load multiplier below which frictional shakedown is guaranteed;

• shakedown upper bound λ2: the load multiplier above which frictional shakedown is impossible:

that is, any state corresponding to λ > λ2 is energy dissipating.

Notice that, if such limits exist, λ0 ≤ λ1 ≤ λ2 while λ2 = λ1 in uncoupled contacts only. We

also introduce here the dissipative load multiplier λD, which in the incremental analyses discriminates
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Figure 3. Sketch illustrating the possible responses of coupled and uncoupled contacts in the steady state, in
terms of the multiplier λ of cyclic loads. In the conditional yellow region, the system response can be either
energy dissipative or non-dissipative depending on initial conditions. 1-col figure

energy dissipative from non-dissipative simulations for given initial conditions (with λ1 ≤ λD ≤ λ2).

Interestingly, a programming method for the limit λD based on the linear matching method, has been

proposed by Ponter (2016) for two-dimensional linear elastic bodies in contact with planar rigid surfaces.

Based on the necessary condition for shakedown in non-associated plasticity, Björkman and Klarbring

(1987) devised a method to compute the shakedown upper bound λ2 for a generic two-dimensional

frictional system, with the sole requirement of the loading domain to be convex and its limits known.

We shall here extend their approach to three-dimensional systems.

3.1. Optimisation algorithm

Differently from the two-dimensional case, in three dimensions the frictional contact problem is fully

non-linear, since the admissible domain for the slip vector is the whole projection of Coulomb’s cone on

the contact plane. Following Klarbring (1986), we consider a piecewise linearisation of the slip surface

by means of a polyhedron (Fig. 2) and identify its faces with a unit normal vector N k, which is defined
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by

N k = cosδ [cosθk, sinθk,−tanδ]T (15)

where θk is the anti-clockwise angle formed by the normal to the k -th face and tanδ = f (the minus

in Eq. (15) is due to the contact normal reactions being positive when compressive). Then the slip

function in Eq. (9a) is replaced by a set of functions written as

ϕk = N kTr ≤ 0, k = 1, ..., K (16)

where K is the total number of faces of the polyhedron. In two-dimensional problems, we have K = 2,

corresponding to the following slip functions of backward and forward slip, respectively (Björkman and

Klarbring, 1987)

ϕ1 = −frn + rt, ϕ2 = −frn − rt. (17)

Following the linearisation, the flow rule in Eq. (9b) is written as

ẇ =
K∑
k=1

N̊ kγ̇k (18)

where N̊ k identifies the inward unit normal vector to the face of the polyhedron in the contact plane,
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where the normality rule applies (Fig. 2), and is given by

N̊ k = [−cosθk,−sinθk, 0]T (19)

Inserting the expression of the contact reactions given by Eq. (11) in Eq. (16), and replacing the

slips with the form of Eq. (18), the set of slip functions is substituted by

Φ = NTre(t) +NTκN̊γ ≤ 0 (20)

where we have assembled the non-negative multiplier γk in an array, the normal vectors N k and N̊ k in

block diagonal matrices for the whole polyhedron and we have removed the dots from the slip rate of

Eq. (18).

The last step to take is removing the time dependence from Eq. (20), which can be done because of

the hypothesis of convex load domain. Following Björkman and Klarbring (1987), we can replace the

effective history with an equivalent cycle of loading passing uniquely for the extreme values of loads.

Mathematically, this is achieved by computing the maximum of the projection of rec(t) on the normal

vector with respect to the V vertices of the load domain, that is

M = max
v

(
NTrec(tv)

)
, v = 1, ..., V (21)
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Finally, the shakedown upper bound λ2 is obtained from the following linear optimisation problem

λ2 = max
λ,γ

λ subject to : (22)

(I) λM +NTκN̊γ ≤ −NTreo

(II ) γ ≥ 0

(III ) λ ≥ 0

where the variable load multiplier λ is maximised, subjected to the linear constraints of Coulomb’s law,

and the vector of optimal slips wop = N̊γ is provided. Notice that the stick limit λ0 is also computed

with this algorithm by taking γ = 0 in Eq. (22).

4. Single-node frictional system

F2

F1

Load case I II

F(t)

w(t)

Lo
ad

Time
OO

A=DA D

B
B

CC

P(t)

Q(t)

Tc
λQo1

λQo2
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λQc1
Po

(a) (b)

x2

x3

x1

t2

n
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Figure 4. (a) Sketch of the three-dimensional single-node frictional system, with the contact plane aligned to
the coordinates x1, x2. (b) Loading scheme considered in this work, showing the time evolution with cycles of
length Tc and domain in the plane of the tangential component Q(t). 2-col figure
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We here consider a single node three-dimensional system, which is an extension of the model discussed

in Klarbring (1990) with three degrees of freedom. An illustrative sketch is provided in Fig. 4a, where

it is shown that the contact plane is aligned with the plane (x1, x2), such that the global and local

reference directions coincide. The notation employed in the following therefore adopts the global indices.

Following the work by Cho and Barber (1998, 1999), we employ this elementary problem in order to

explore the response of a three-dimensional system to cyclic loading and shed light on how frictional

shakedown is affected by coupling. The stick and shakedown limits are firstly obtained from the linear

optimisation algorithm presented in Sect. 3. Then, we employ a modified version of the Gauss-Seidel

algorithm described by Ahn and Barber (2008) to perform incremental analyses and compare the results

from optimisation (Beccarelli, 2020). Finally, we show how the steady state behaviour can be predicted

by simple geometric reasoning derived from the imposition of the frictional constraints.

The quasi-static solution of the frictional contact problem is described by the following equilibrium

equations (Cho and Barber, 1999)

κw = F + r (23)

where the stiffness matrix κ has six coefficients derived from a system of three linear springs (Fig. 4a).

However, the coordinate system in the tangential plane can be chosen to have κ31 equal to zero, so that
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we can write

κ =


κ11 κ21 0

κ21 κ22 κ32

0 κ32 κ33

 (24)

Under the constraints of the frictional contact problem, as described in Sect. 2, the system admits

three possible states:

i) stick, when ẇt = 0, wn = 0 and rn > 0, with the frictional constraint ‖rt‖ < frn;

ii) slip, when wn = 0, rn > 0 and ẇt 6= 0;

iii) separation, when wn > 0 and r = 0.

Following Cho and Barber (1999), we shall consider f < fc, where fc is a critical coefficient of friction

needed to ensure uniqueness of the quasi-static solution, defined by

fc =
d3√
d21 + d22

and di = eijkκj1κk2 (25)

are the components of the unit normal to the separation plane in the space of external forces Fi (eijk is

the permutation tensor and summation convention for repeated indices applies)(Cho and Barber, 1999).

In the following, we analyse the response of the system subjected to the loading history defined in
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Eq. (6). Specifically, we take

F (t) =


F1(t)

F2(t)

F3(t)


=


Q(t)

P (t)

 = −


λQo1

λQo2

Po


−


λQc1

λQc2

0


f(t) (26)

where f(t) ∈ [−1,+1]. Notice that the load factor λ here multiplies both the mean value and the

amplitude of tangential loads. The normal component P (t) is increased from zero and kept constant

at Po, while the tangential component Q(t) is applied monotonically (point A in Fig. 4b) and then

oscillates around its mean value λQo (point B) with amplitude λQc. Two loading cases are considered,

as illustrated in Fig. 4b:

1. load case I, where F1 is applied (with Qo1 = Qc1 = Po) while F2 = 0;

2. load case II , where both tangential components are applied in phase (with Qo1 = Qc1 = Po and

Qo2 = Qc2 = Po).

For what has been said in Sect. 3, the full loading history needs to be considered in incremental

analyses, while the extremes only (represented by C and D in Fig. 4b) are required in the optimisation.

The stiffness matrix of the one-node system, Eq. (24), has been chosen to explore three different

coupling scenarios:
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a. full coupling, with κ11 = 1, κ21 = 1, κ22 = 6, κ32 = −5, κ33 = 7. We find

d = [−1/
√

3, 1/
√

3, 1/
√

3]Tand fc = 1/
√

2;

b. no tangential coupling, with κ11 = 1, κ21 = 0, κ22 = 6, κ32 = −5, κ33 = 7. We find

d = [0, 0.6402, 0.7682]Tand fc = 1.2;

c. no normal-tangential coupling, with κ11 = 1, κ21 = 1, κ22 = 6, κ32 = 0, κ33 = 7. We find

d = [0, 0, 1]Tand fc →∞.

4.1. Stick and shakedown limits

The linear optimisation algorithm is employed to compute the load multipliers corresponding to the

stick limit λ0 and the shakedown upper bound λ2. The optimisation curves are then compared with

results deriving from Gauss-Seidel incremental analyses. Briefly, this algorithm assumes that the state

of a contact node, correctly determined at the instant of time t, continues to apply even following a

finite temporal increase ∆t. In the ensuing incremental analyses, suitable time steps are adopted on the

base of a preliminary convergence study, comprised between ∆t = Tc/80 for the single-node system and

∆t = Tc/400 for multi-node frictional systems of Sect. 5 below. Initially, a state of stick is assumed;
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then, at the generic time step tj, reactions rt1, rt2 and displacements wt1, wt2 are computed. At this point,

the inequalities of Coulomb’s friction law are checked to verify the state of the node, i.e. stick, slip or

separation (although the latter is not considered in the present paper concerning complete contacts). If

the verification is positive, the previous status of the node is provisionally confirmed. Otherwise, the

status is updated according to the type of violation and the relative displacements are calculated. In

Sect. 5, where we consider multi-node systems, this procedure will be performed node-by-node; when

the state is checked on the selected node, the quantities related to all the other nodes take the value

calculated at the end of the previous instant tj−1 and the procedure is iterated until the real state

corresponding to each node of the contact interface is identified. More details about the Gauss-Seidel

procedure and its implementation in three-dimensional multi-node systems can be found in Beccarelli

(2020). In order to distinguish the system response at the steady state, the dissipated energy per cycle

is computed according to (Flicek et al., 2015a)

Wl = −
N∑
i=1

∮ (
r
(i)
t1 ẇ

(i)
t1 (t) + r

(i)
t2 ẇ

(i)
t2 (t)

)
dt (27)

where the closed loop integral refers to the l-th cycle, while sum is extended to all the N contact nodes

(in the single-node problem, we have N = 1). The system is considered in a condition of shakedown

when the energy dissipated in the last cycle is less than a sufficiently small tolerance. Notice that the

algorithm does not use a normalised definition of the dissipated energy; instead, the appropriate value

of tolerance is set with a trial-and-error procedure. This because we have found that, depending on
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the problem, the threshold value changes. Moreover, we have noticed that the cyclic response stabilizes

after a few cycles and a threshold value based only on the ratio of dissipation in successive cycles does

not seem to be applicable.
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Figure 5. Stick and shakedown load multipliers λ0 and λ2 obtained from linear optimisation and comparison
with results from incremental analyses using the Gauss-Seidel algorithm. Both load cases and different coupling
scenarios are displayed: (a-b) full coupling, (c-d) no tangential coupling (κ21 = 0), (e-f) no normal-tangential
coupling (κ32 = 0). In (c), analytical values of the limits are derived according to the calculations described in
Sect. 4.2, with λD representing the limit between dissipative and non-dissipative simulations (for the meaning
of angle β refer to Fig. 7). 2-col figure

Results of the optimisation algorithm and incremental analyses are summarised in Fig. 5 as a

function of the friction coefficient f < fc, for the two load cases and three coupling scenarios previously
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described. The accuracy of the optimisation is affected by the total number of faces of the polyhedron

K and preliminary analyses suggested that K ≥ 36 is enough to obtain full convergent solutions. We

at once observe that the normal-tangential uncoupled situation, when κ32 = 0, is the only one showing

perfect agreement between incremental and optimisation results (Fig. 5e,f) in the whole spectrum of

friction coefficients. Indeed, the lower and upper bounds to the shakedown load λ1 and λ2 coincide

without a conditional region; minor discrepancies might depend on the numerical threshold separating

dissipative and non-dissipative behaviour. On the contrary, the other scenarios suggest that dissipative

states (hollow circles in figures) might exist below the shakedown limit λ2, which indeed represents by

definition the limit above which shakedown can never occur. We might draw a tentative curve λ = λD

characterising the limit that discriminates dissipative and non-dissipative behaviour (that is, connecting

the top row of filled circles); such a curve would always lie below λ2. However, since our analyses have

in no way explored the conditional region existing in coupled contacts (in all incremental analyses we

have assumed null initial slips), it might well be that analyses with different initial conditions result in

dissipative situations even for lower loads (Flicek et al., 2017).

4.2. Evolution of slips

The main use of incremental analyses is to gain an insight into the evolution of the frictional contact

under loading. From the previous simulations, we have selected an intermediate value of friction f = 0.5

and extracted frictional slips throughout the whole loading history. Results are summarised in Fig. 6,

for a load multiplier λ = λ2 and λ = 1.2λ2. Notice that λ2 is almost coincident with λD for f = 0.5, so
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that in practice simulations with λ = λ2 are representative of a situation of shakedown. Slips are shown

in the dimensionless form w̃m = wmκ11/Po with m = 1, 2. All incremental analyses were stopped after

three complete loading cycles because we have found that the system had already entered the steady

state.
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Figure 6. Slip paths in the single-node frictional system, shown on the contact plane for f = 0.5, when (a)
λ = λ2 (shakedown) and (b) λ = 1.2λ2 (energy dissipative response). In (a), highlighted dots are related to
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Maps in Fig. 6a,b display the trajectories followed by the single node on the contact plane during

the whole loading history, conveying a far more complex picture than the backward or forward slip of

plane contact problems. In load case I , Eq. (26) with F2 = 0, the tangential force is applied along

x1 only, hence the loading scheme is two-dimensional: however, slips are developed in both directions,

with the only exception in the scenario without tangential coupling (orange circles in figures). To

further stress the difference between dissipative and non-dissipative situations we have plotted the time

evolution of the slip components in Fig. 6c,d, for the case κ21 = 0. Shaken down simulations (Fig. 6c)

display a constant part after the initial transient state in which slips are developed; on the contrary,

the steady state response in dissipative situations (λ = 1.2λ2) appears different depending on the load

case. Our analyses suggest that for load case I the node experiences cyclic slip, highlighted by the

saw-tooth pattern in Fig. 6d. On the contrary, for load case II , Eq. (26) with F1 = F2 6= 0, slips are

cumulated, resulting in the so-called ratchetting, at least within the three cycles considered. Optimal

slips w̃op computed from linear optimisation for λ = λ2 are superposed to the slip trajectories of Fig.

6a. There is good agreement in terms of magnitude with the slips obtained from incremental analyses,

although with some differences. This should not surprise, since the Gauss-Seidel algorithm follows the

complete evolution of the frictional system whereas optimal slips are the distribution that maximises the

amplitude of cyclic loads without breaking the frictional constraints of the linear programming problem.

As discussed in Sect. 3, the curve λ = λD would always lie below λ2; in turn, we shall expect the optimal

slip magnitude to be larger than the real one. We are able to provide an explanation of this through
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simple analytical computations.
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Let us again focus on the scenario without tangential coupling (κ21 = 0 ). In this simple single-node

system, we can derive both the limits λ2 and λD analytically and provide an explanation to the fact that

the optimal slip array has a non-zero component along the x2 direction, in contrast to the predictions

of Gauss-Seidel results (orange circles in Fig. 6a). Let us consider the space defined by the components

of the external force vector F1, F2, F3. As previously mentioned, the condition of separation F ·d > 0 is

represented by a plane passing through the origin F = 0, with unit normal d (Klarbring et al., 2007).

When there is no tangential coupling the unit normal d has a null component in the F1 direction, so that

if we consider the vertical plane F2, F3 its projection is represented by a line, whose slope is tanα = d2/d3

(Fig. 7a). Incidentally, note that in the case of no normal-tangential coupling the unit normal would
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be parallel to the axis F3. In the tangential plane F3 = −Po the diameter of Coulomb’s circle is equal

to 2fPo, while the tangent lines are inclined of an angle β = arcsin(fd2/d3) (Fig. 7b). Such an angle is

defined by the line belonging to the plane F3 = −Po, passing through point C and tangent to the circle

centred in O. In order to prevent separation, the vertex of any cone has to lie on the separation plane.

Initially, the system is brought to point P upon application of normal loading only (according to the sign

convention, F3 < 0). Considering load case I , tangential loading is then applied in direction x1 and the

stick limit is encountered on the border of the blue circle centred in O (point E), when λ = λ0 = f/2.

Since F2 = 0 and w2 = 0 at any stage due to the lack of coupling between the tangential directions,

we can only have vertical shifts of the cone circles in Fig. 7b as the load multiplier λ is increased.

Moreover, for the initial assumption of κ31 = 0 in Eq. (24), the radius cannot increase because there is

no coupling between tangential slip w1 and normal force F3. Hence, further loading requires the circle to

shift to a new one in the tangential plane (yellow circle centred in E), whose border represents the limit

λ = λD = f (point S). However, the optimisation shows that there exists an upper limit λ2 which is

larger than the multiplier λD, but it can be reached only under specific conditions, namely, the existence

of w2 6= 0, as found in Fig. 6a. From geometrical considerations, we find λ2 = f/cos β (point U);

any further increase would not be admissible, since the circle of radius f/ cos2 β is the largest passing

through the initial point P and tangent to a line inclined of β. The analytical values of load multipliers

here computed are illustrated in Fig. 5c, showing a perfect matching with the results of optimisation.
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5. Multi-node frictional systems

We now move on to considering multi-node systems, in order to show the potential of the proposed

numerical tools to be applied to various geometries. Each of the following examples has been discretised

by means of the finite element method with 8-node linear brick elements. The mesh adopted in the FE

models is characterized by a uniform spacing of the nodes, with a one-to-one correspondence between

boundary nodes on the contacting bodies. Plane models of the corresponding two-dimensional examples

have also been generated, with 4-node plane strain elements, keeping the mesh consistent. With respect

to the mesh size, we have verified that its refinement along the contact surface is sufficient to ensure

good precision in stress approximation, particularly in contacts involving stress concentrations, and

convergence in the inner contact region. However, numerical convergence was not rigorously verified as

this would have implied a prohibitive computational cost. Upon the application of static condensation

by Thaitirarot et al. (2014), see Sect. 2.2, each problem is reduced to the sole contact degrees of

freedom, whose number is the same for all the examples provided. The loading history is described by

Eq. (26) and illustrated in Fig. 4b; specifically, for each geometry we have considered load case I, when

only the component along x1 is considered (F2 = 0), and load case II , when cyclic loads are applied

simultaneously along both the tangential directions x1, x2. Each example has been analysed with the

optimisation algorithm described in Sect. 3, where Coulomb’s cone is linearised by means a polyhedron

with K = 12 faces (see Fig. 2), and employing incremental analyses with the Gauss-Seidel algorithm

(Beccarelli, 2020). A preliminary comparison with SIMULIA Abaqus 2017 (Dassault Systemes) finite
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element software was made to assess the quality of the algorithm, in terms of frictional slips and total

energy dissipated per cycle Wl, Eq. (27), see Beccarelli (2020) for details.

5.1. Contact between symmetric elastic bodies

Let us consider the symmetric contact between two elastic blocks of sides 2a, with a = 10mm,

Young’s modulus E = 200GPa and Poisson’s coefficient ν = 0.3 (Fig. 8a). External loads consist in

a static force F3 = −Po, which is the resultant of a uniformly distributed pressure applied on the top

surface, and cyclic forces F1, F2 comprising the resultants of shear tractions Q1, Q2 and equilibrating

bending moments M1,M2. Loads are applied to body 1, whereas body 2 is constrained along its bottom

surface to prevent rigid body motion. Finite elements are uniformly spaced along the contact surface

with step 0.1a, for a total of 441 contact nodes. Additionally, we have considered the same geometry

and loading but introduced a material mismatch by changing the elastic properties (E1 = 200GPa, ν1 =

0.01, E2 = 8.73TPa, ν2 = 0.30) of the bodies. In the corresponding two-dimensional plane strain problem

the material mismatch can be quantified by Dundurs’ bimaterial constants (Barber, 2018), which for

the selected case are equal to αD = 0.96 and βD = 0.48. Notice that the material parameters have been

intentionally chosen in order to maximise the effect of the mismatch with respect to contact coupling

(Flicek et al., 2017).

In Fig. 8b, the stick and shakedown limits from the linear optimisation algorithm are compared

with incremental results for a selected friction coefficient (f = 0.6) in the case of elastically similar

bodies, which corresponds to an uncoupled contact where λ2 = λ1. However, we might notice some

32



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

λ2 = λ1λ2 = λ1

Stick condition Non-dissipative Dissipative λ0 λ2 

Coefficient of friction f

Coefficient of friction f

Coefficient of friction f

Coefficient of friction f

Lo
ad

 fa
ct

or
 λ

 
Lo

ad
 fa

ct
or

 λ
 

Lo
ad

 fa
ct

or
 λ

 
Lo

ad
 fa

ct
or

 λ
 

(b)

(c)

2D

2D

x2

x3

x1

material mismatchmaterial mismatch

(a)

E=200GPa
υ=0.3

E=200GPa
υ=0.30

body 1

body 2

Po
Q2Q1

M2

M1

2a
2a

2a

2a

E=200GPa
υ=0.01

body 1

Po
Q2Q1

M2

M1

2a
2a

2a

2a

E=8.73TPa
υ=0.30

body 2

Q2=M2=0

Q2=M2=0

Figure 8. (a) Three-dimensional contact between symmetric bodies, with same elastic properties and material
mismatch. Stick and shakedown load multipliers λ0 and λ2 from linear optimisation and comparison with
results from incremental analyses using the Gauss-Seidel algorithm for f = 0.6 in (b) symmetric elastic bodies
and (c) bodies with material mismatch. Simulations with load case I (Q2 = M2 = 0) are compared with the
corresponding two-dimensional problem. 2-col figure

discrepancy with the Gauss-Seidel results, presumably due to the piecewise linearisation of Coulomb’s

cone in the optimisation. As a matter of fact, the normal to the polygon approximating Coulomb’s

circle in the tangential plane might not be coincident with the direction of the reaction vector rt (Fig.

2). Furthermore, circumscribed linearisation tends to overestimate the limit condition, while results

obtained with inscribed polygonal approximation (not shown here) provided smaller limit loads. In

Fig. 8c we report the results for the case with material mismatch, in which the main feature seems
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to be a nonlinear variation of the stick limit with respect to the coefficient of friction f . Under load

case I, Eq. (26) with F2 = 0, we can also compare the corresponding two-dimensional problem, which

appears to show a very similar response both with and without material mismatch. In other terms,

the symmetry of the problem is such that coupling between tangential directions is negligible, so that

only three-dimensional loading – i.e load case II , Eq. (26), where F1 = F2 6= 0 – fully activates the

three-dimensional response of the contact.

Figure 9. Contours of normalised slips w̃1, w̃2 for f = 0.6, obtained from the Gauss-Seidel algorithm for λ = λ2
(extracted at the last time instant). Uncoupled case with symmetric elastic bodies, (a) load case I and (b) load
case II . Bodies with material mismatch, (c) load case I and (d) load case II .2-col figure

In Fig. 9 we show the contours of the dimensionless slips w̃1, w̃2 extracted from the last time step of
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incremental analyses, for f = 0.6 and λ = λ2. It appears that loading along x1 generates a symmetric

distribution with maximum along the mid-section of the contact surface (x1 = a), while no slip occurs in

the other direction (Fig. 9a). Interestingly, material mismatch seems to break the symmetry, with slips

of comparable magnitude but shifted with respect to the mid-section (Fig. 9c). With load case II , the

uncoupled problem shows a double symmetry, with maximum displacements in the middle, where indeed

shear stress is expected to be maximum (Fig. 9b). Once again, the coupled case appears not symmetric

(Fig. 9d). We can also compare slips in the uncoupled problem with the optimal wop distribution

computed from linear optimisation and illustrated in Fig. 10. It appears that for load case I the trends

look very similar (Fig. 10a compared to Fig. 9a), although next to the edges slips w̃op,1 are negative;

however, load case II portrays a rather complex pattern without an apparent physical relevance (Fig.

10b compared to Fig. 9b).

Figure 10. Contours of normalised optimal slips w̃op,1, w̃op,2 from linear optimisation, for f = 0.6, in the
uncoupled problem. (a) Load case I (Q2 = M2 = 0) and (b) load case II . Please notice the different scale with
respect to Fig. 9. 2-col figure
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5.2. Contact between punch and half-space

In this section we analyse the three-dimensional contact between a square punch and an elastically

similar half-space, approximated by a large rectangular block of sides 20a and height 10a. The material

is linear elastic, with Young’s modulus E = 200GPa and Poisson’s coefficient ν = 0.3. F3 = −Po is

the resultant of a uniformly distributed pressure applied on the top surface of the punch, whereas the

tangential components F1, F2 consist in uniformly distributed bulk tractions Q1, Q2 applied to the half-

space (Fig. 11a). The half-space is constrained along its bottom surface to prevent rigid body motion.

Finite elements are uniformly spaced along the contact surfaces with step 0.1a, for a total of 441

contact nodes. Differently from the previous example of symmetric bodies, here the normal-tangential

coupling arises because of a domain mismatch, which generally is weaker than that arising from material

dissimilarity (Flicek et al., 2017). Because of the mismatch, the state of stress in proximity of the sharp

corners presents a singularity, which in the corresponding two-dimensional problem can be computed

by means of the asymptotic method in both stick and slip scenarios. However, here the stress might be

singular not only along the edges but also at the vertices (Koguchi and Muramoto, 2000). The dominant

term in the edge regions provides a lower bound on Coulomb’s friction coefficient for the existence of

a full adhered solution, with f = 0.543 in the two-dimensional problem (Churchman and Hills, 2006;

Flicek et al., 2015b). In other terms, when f ≤ 0.543, a region of edge slip will always be present,

implying that a stick limit cannot be properly defined. Indeed, the existence of a lower bound seems

to be confirmed in the three-dimensional results derived from the optimisation, as illustrated in Fig.
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11b (the two-dimensional problem is added as comparison). Please notice that the critical coefficient

of friction differs from the limit predicted by asymptotic analysis, because the mesh refinement is not

sufficient to approximate the steep stress gradients in the edge regions.

The contours of the dimensionless slips extracted from the last time step of incremental analyses, for

f = 0.6 and λ = λ2, are reported in Fig. 11c. In both load cases, the trend of w̃1 looks similar, with null

values in the mid-section of the contact surface (x1 = a) and an antisymmetric distribution. The same

distribution applies to w̃2 slips in load case II , while these are null everywhere when Q2 = 0. We have

also added the optimal slip distributions wop for comparison (Fig. 11d). It appears that the agreement

is rather good, save for the slip distribution parallel to the x2-direction when Q2 = 0. Finally, Figs.

11e-f show the same comparison between incremental analyses and optimisation results in terms of the

slip magnitude, with arrows representing the slip direction on the contact plane.
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Figure 11. (a) Three-dimensional contact between a square punch and an elastically similar half-space. (b)
Stick and shakedown load multipliers λ0 and λ2 from linear optimisation and comparison with results from
incremental analyses using the Gauss-Seidel algorithm for f = 0.6 (related to the three-dimensional problem).
Simulations with load case I (Q2 = 0) are compared with the corresponding two-dimensional problem. (c)
Contours of normalised slips w̃1, w̃2 for f = 0.6, obtained from the Gauss-Seidel algorithm for λ = λ2 (extracted
at the last time instant). (d) Contours of normalised optimal slips w̃op,1, w̃op,2 from linear optimisation, for
f = 0.6. (e-f) Contours of normalised slip magnitude ‖w‖ and ‖wop‖ and quiver plots of slip direction on the
contact plane x1, x2, for both load cases. 2-col figure
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6. Discussion

Contact between conforming bodies remains a challenging topic with both theoretical and numerical

complexities; often, it has been faced under the simplifying assumption of a two-dimensional domain,

where the frictional contact problem has amenable features, including a piecewise linear frictional law.

We argue that the main feature of three-dimensional contacts is the existence of coupling in the tangential

plane, which activates the fully nonlinear frictional response even in the case of two-dimensional loading.

To tackle the complex response of three-dimensional contacts, we have resorted to a single-node system,

previously studied by Cho and Barber (1999), which in this work has been considered to analyse the

quasi-static response to cyclic loading. The onset of slip and the maximum amplitude of cyclic loads

below which a non-dissipative steady state might exist can be easily determined using the proposed

optimisation algorithm. More interestingly, we can manipulate the stiffness matrix of the system to

explore the impact of contact coupling: indeed, in the most general case, non-zero off-diagonal terms

imply that, above the stick limit, displacements and contact reactions in different directions are mutually

affected. Comparing a case of full coupling with a tangentially uncoupled system (κ21 = 0), we have

clearly shown that the evolution of slips differs, by plotting the trajectory of the node during the

whole loading history (Fig. 6). Specifically, a fully coupled system can develop slips in any direction,

irrespectively of the direction of loading (squares in Fig. 6a-b).

The impact of tangential coupling on three-dimensional multi-node systems is more difficult to assess.

Slip contours obtained from incremental analyses, in both the two-body contact and punch on half-space
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problems, suggest that tangential coupling is absent. This is highlighted by the null distribution of slip

displacements w2 when loading is applied along direction x1 only (Figs. 9a-c, Fig. 11c, top). It might

be a reasonable consequence of the symmetry of both problems in the tangential plane (note that the

tangential coupling in the problems analysed is strictly connected with the adopted orientation of the

coordinate system x1, x2 in the contact plane). However, this seems to contradict the considerable

difference with respect to the corresponding two-dimensional case in terms of slip limit and shakedown

upper bound obtained from the optimisation. In other terms, even when the configuration of the

problem results in poor coupling on the tangential plane, the response to external loading is fully three-

dimensional.

Normal-tangential contact coupling has a fundamental impact on the assessment of the shakedown

limit load. Its main effect is the development of a conditional region in the steady state response, in

which dissipative and non-dissipative scenarios might coexist below the shakedown upper bound λ2,

depending on initial conditions. It was out of the scope of our work to explore the impact of different

initial conditions within the conditional region, whose size appears to increase with the level of friction

(Fig. 5). In general cases, the impossibility of employing limit analyses theorems has made iterative

approaches, such as that proposed by Flicek et al. (2017), inevitable. In the case of the single-node

system, we have illustrated how the size of the conditional region can be approximated through a

didactic example (Fig. 7). Taking advantage of the amenable case of two-dimensional loading and no

tangential coupling (κ21 = 0), we have performed an analytical computation of the limits enclosing
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all the dissipative scenarios explored with incremental analyses (Fig. 5c). Specifically, we could show

that the system is able to sustain cyclic loads up to the dissipative limit λD = f , whereas reaching

the shakedown upper bound λ2 requires different initial conditions with a non-zero slip displacement

along the other tangential direction. The same behaviour is observed in multi-node systems as well,

with load case I (Q2 = 0), where a notable difference exists between the results of incremental analysis

and linear optimisation. Specifically, the dissipative limit λD computed from the incremental analysis

in the half-space problem (for f = 0.6, lower hollow circle in Fig. 11b) is considerably smaller than

the shakedown upper bound λ2 from the optimisation (green dashed line in Fig. 11b). Indeed, this

is reflected in the different distribution of slips in the x2-direction (Fig. 11c compared to Fig. 11d),

suggesting that reaching the shakedown upper bound requires a non-zero slip displacement along this

direction.

The origin of coupling is debated. In discrete formulations, a measure of coupling can be related

to some norms of the the reduced stiffness matrix (Flicek et al., 2017). In our work, we have explored

both material and domain mismatch and found an appreciable impact on the limit loads. Theoret-

ical arguments for the impact of material dissimilarity in complete contacts stem from the analysis

of Dundurs’ bimaterial constants (Barber, 2018). However, the existence of such parameters for the

three-dimensional case is debatable (Koguchi and Muramoto, 2000).
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7. Conclusion

We have carried out a comprehensive study on the behaviour of three-dimensional systems with

conforming frictional contacts subjected to cyclic loading. The numerical tools proposed include an

optimisation algorithm to compute the shakedown load multiplier, based on the upper bound theorem

for non-associated frictional laws and linearisation of Coulomb’s cone. Furthermore, incremental anal-

yses following a prescribed loading history were performed with a Gauss-Seidel algorithm, in a new

formulation suitable for the fully nonlinear three-dimensional frictional problem. These approaches are

extremely efficient with respect to alternative numerical methods (such as, for instance, finite element

analyses) in large-scale discrete problems, taking advantage of a static condensation procedure which

reduces the degrees of freedom of any problem to the sole contact nodes. While both the numerical

approaches were previously applied to two-dimensional complete contacts, their extension to the full

three-dimensional case required a non-trivial effort. The main outcome of our work is the comprehen-

sive picture offered on the response of three-dimensional systems, which we have tried to highlight by

including comparisons with the two-dimensional case. Specifically, our results help to shed light on the

role of contact coupling, which in three dimensions is enriched with a term deriving from the interaction

between reactions and displacements on the contact plane. Under loading histories of constant normal

load and pulsating tangential actions, illustrative examples are discussed in terms of the shakedown

response. These include: single node systems with different normal and tangential coupling scenarios;

symmetric bodies with possible material mismatch; punch on a half-space with domain mismatch. In
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conclusion, the numerical algorithms, tested in various geometries, may be efficient tools to support the

analyses of contact geometries in engineering applications.
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