Digitalization and smart control of district heating networks are emerging as key features to make these systems flexible and optimal. However, since effective and scalable methods for large-scale systems are currently unavailable, the implementation of smart controllers can be challenging and time-consuming. This is addressed herein by proposing a novel approach to include the thermal capacity of the connected buildings in the optimal control of large-scale heating networks. A reduced-order model of the aggregated communities supplied by a large-scale network is used to define their State of Charge, which is exploited to store or retrieve energy when convenient, while maintaining indoor comfort. This concept is included in a Model Predictive Controller that optimizes power plant management and heat distribution. The results show that the controller successfully shaves heat supply peaks to different regions up to 16% and reduces the difference between distribution and soil temperature up to 20%. At the same time, the return temperature is kept close to the set-point of 35 °C, which is lower than the historical operation and further reduces distribution heat losses. The procedure can be easily replicated to optimize systems of different sizes and to support their transition to efficient, smart district heating networks.

Enabling smart control by optimally managing the State of Charge of district heating networks / Saletti, C.; Zimmerman, N.; Morini, M.; Kyprianidis, K.; Gambarotta, A.. - In: APPLIED ENERGY. - ISSN 0306-2619. - 283:(2021), p. 116286. [10.1016/j.apenergy.2020.116286]

Enabling smart control by optimally managing the State of Charge of district heating networks

Saletti C.;Morini M.;Gambarotta A.
2021-01-01

Abstract

Digitalization and smart control of district heating networks are emerging as key features to make these systems flexible and optimal. However, since effective and scalable methods for large-scale systems are currently unavailable, the implementation of smart controllers can be challenging and time-consuming. This is addressed herein by proposing a novel approach to include the thermal capacity of the connected buildings in the optimal control of large-scale heating networks. A reduced-order model of the aggregated communities supplied by a large-scale network is used to define their State of Charge, which is exploited to store or retrieve energy when convenient, while maintaining indoor comfort. This concept is included in a Model Predictive Controller that optimizes power plant management and heat distribution. The results show that the controller successfully shaves heat supply peaks to different regions up to 16% and reduces the difference between distribution and soil temperature up to 20%. At the same time, the return temperature is kept close to the set-point of 35 °C, which is lower than the historical operation and further reduces distribution heat losses. The procedure can be easily replicated to optimize systems of different sizes and to support their transition to efficient, smart district heating networks.
2021
Enabling smart control by optimally managing the State of Charge of district heating networks / Saletti, C.; Zimmerman, N.; Morini, M.; Kyprianidis, K.; Gambarotta, A.. - In: APPLIED ENERGY. - ISSN 0306-2619. - 283:(2021), p. 116286. [10.1016/j.apenergy.2020.116286]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0306261920316743-main.pdf

non disponibili

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Paper_Vasteras_Part2_R2.pdf

Open Access dal 07/12/2022

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2887077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact