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Abstract 
 

Digitalization and smart control of district heating networks are emerging as key features to make 

these systems flexible and optimal. However, since effective and scalable methods for large-scale 

systems are currently unavailable, the implementation of smart controllers can be challenging and 

time-consuming. This is addressed herein by proposing a novel approach to include the thermal 

capacity of the connected buildings in the optimal control of large-scale heating networks. A reduced-

order model of the aggregated regions supplied by the Västerås network is used to define their State 

of Charge, which is exploited to store or retrieve energy when convenient, while maintaining indoor 

comfort. This concept is included in a Model Predictive Controller that optimizes power plant 

management and heat distribution. The results show that the controller successfully shaves heat 

supply peaks to different regions up to 16% and reduces the difference between distribution and soil 

temperature up to 20%. At the same time, the return temperature is kept close to the set-point of 35 

°C, which is lower than the historical operation and further reduces distribution heat losses. The 

procedure can be easily replicated to optimize systems of different sizes and to support their transition 

to efficient, smart district heating networks. 

 

Keywords: District Heating Network; State of Charge; building heat capacity; Model Predictive 

Control; optimal management; scalability 

 

mailto:costanza.saletti@unipr.it


2 

 

1. Introduction 

District Heating Networks (DHNs) are one of the most promising means to supply heat efficiently 

[1] and improve air quality in urban areas [2]. Indeed, by supplying hot water to consumers by means 

of a network of pipelines, DHNs offer several advantages [3]: (i) the economy-of-size, which 

determines a higher efficiency and lower cost of central heat supply devices compared to low-size 

boilers, (ii) the possibility to exploit local strategic resources, such as renewables and excess heat 

from high-temperature processes, (iii) flexibility, and (iv) a lower local environmental impact in terms 

of emissions of particulate matter and nitrogen oxides. The share of heat supply by DHNs in the 

heating sector is significant in many European countries (e.g. both Sweden and Finland have a 50% 

market share) but should be further improved in other areas (e.g. Italy has a market share lower than 

5%). According to a report from the Heat Roadmap Europe project [4], district heating has the chance 

to provide 50% of heating demand in 14 countries and to allow 30% energy saving, showing its 

importance in the energy sector. However, DHNs have to be integrated in a global energy scenario 

that is rapidly changing [5], due to the growing penetration of discontinuous sources and distributed 

generation devices (e.g. heat pumps [6] and solar panels). This might lead to systems in which 

production and demand are not synchronous. Hence, it is necessary to exploit smart approaches and 

innovative control strategies to remove the barriers of location and time in thermal energy distribution 

networks [7] and to achieve system flexibility. According to Vandermeulen et al. [8], as far as energy 

systems are concerned, flexibility is “the ability to speed up or delay the injection or extraction of 

energy into or from a system”. Hence, the flexibility requires the system to have a thermal capacity 

which acts as a buffer between energy production and actual delivery.  

This concept is recalled by Hennessy et al. [9], who propose a review of research works that exploit 

short-term storage to improve the flexibility of thermal energy grids. The types of thermal energy 

storage considered in this study are centralized storage tanks and storage in the network pipes. The 

latter consists of increasing the temperature of the water in the distribution network to preload it and 
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optimize heat load generation, but it is based on an approximated calculation of the storage capacity. 

Moreover, this method goes against the actual trend of lowering the network temperature in both 

design [10] and optimization studies [11] in order to reduce heat losses – with consequent increased 

efficiency and more affordable costs – and achieve 4th generation DHNs [12]. Therefore, it is worth 

carrying out more research on these topics [13] and to investigate more preferable types of storage in 

energy networks.  

Another review [14] classifies the storage solutions for DHNs according to the occurring physical 

phenomenon (sensible, latent or chemical storage), the duration (short-term or long-term) and the 

layout (distributed or centralized storage). The review mainly focuses on devices specifically 

designed to be included in the system (e.g. storage tanks), and introduces only marginally alternative 

methods such as exploiting the pipeline capacity or the building inertia, or modifying the building 

request (also known as demand side management [15]). The inclusion of these aspects in the optimal 

management of the building or district might lead to significant improvements in the energy 

efficiency of these systems.  

While some works investigate the potential role of the water in the networks [16], a more promising 

direction is the analysis of the thermal capacity of buildings [17], exploited as individual devices that 

are able to modulate heating power [18] and provide more flexibility to the electrical grid [19], or as 

distributed storage means within DHNs. They can be exploited to achieve energy efficiency by peak 

shaving and valley filling, which consist of shaping production and thermal load in such a way that 

they are kept as constant as possible [20]. These are objectives of studies that develop a model-free 

technique to control a cluster of thermostatically controlled loads connected to a DHN [21], and that 

take into account the dynamics of a building that can be charged or discharged to a certain degree 

depending on the indoor comfort [22]. However, these methods are nor real-time-control-oriented 

neither applicable on a large-scale, which require novel modeling approaches, such as dealing with 

simplified energy balances with regional aggregated parameters for heat capacity and insulation [23].  
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1.1 Smart control 

In large-scale DHNs, heat propagation is subjected to considerable delays that can reach several 

hours, depending on flows and system sizes. For this reason, the temperature control of these systems 

is typically performed manually according to operator experience, which is non-optimal [24]. Thus, 

smart control approaches [6] could foster the automation of DHNs and lead to optimal management, 

lower temperatures and reduced losses. For instance, predictive control showed great potential in 

multiple simulation studies for achieving the stable operation of the power plant supplying large-scale 

networks [25], and for scheduling the cold distribution in an integrated energy system comprising 

source, network and load [26]. An increase in the system scale challenges the computational 

efficiency of the approach in the latter work, in which the necessity to develop a more efficient 

solution for large communities is highlighted. Other recent articles propose the smart control of large-

scale DHNs by exploiting different automation approaches, such as feed-forward predictive control 

to reduce the network return temperature [27], and artificial intelligence to operate peak load 

management and rationalize the use of the production units [28]. However, the proposed methods are 

frequently case-dependent and their extension to real scenarios is not always straightforward. 

A predictive controller based on Model Predictive Control (MPC) with a Dynamic Programming 

optimization algorithm [29] has been developed [30], tested in simulation cases [31] and prototyped 

[32] for small-scale real applications such as school complexes and university campuses. In such 

systems, the reduced dimension of the problem allows each consumer to be individually modeled and 

identified without compromising the computational feasibility of the approach. 

The extension to large-scale DHNs is not straightforward, as the number of buildings increases 

significantly, and therefore they cannot be considered as separate individual elements. Suitable 

reduced-order models [33] and optimization algorithms [34] are necessary to promote the 

aforementioned technique at city-scale. More studies that aim to address these challenges might be 

essential in the further improvement of DHNs.  
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1.2 Scope of the work 

In the light of the research gaps outlined above, this paper proposes a method to enable the smart 

control and optimal management of large-scale DHNs by including the thermal capacity of the 

connected buildings. It is especially applicable to cases where not enough information has been 

provided about the actual network characteristics, or where the end-users are not monitored at an 

individual-building scale. Aggregated areas of large-scale DHNs are exploited as thermal storage by 

assigning them a State of Charge (SoC). This concept is included in an optimization problem which 

aims to achieve thermal peak shaving and supply temperature reduction. This procedure is finally 

embedded in a predictive controller that is tested on a detailed dynamic model of the network 

developed in [27]. The case study is the district heating network of the city of Västerås, located in 

central Sweden. Nonetheless, the method is suitable for any region of a DHN for which coarse data 

at the main substation heat exchangers are available.  

 

1.3 Main contribution 

The novelty of the work with respect to the current state-of-the-art research is determined by the 

following main contributions: 

• The State of Charge of district heating network. According to this concept, the buildings 

connected to the network are equated to a battery which can be charged/uncharged when it is 

convenient for the system. The classical thermal-electrical analogy, typically exploited in heat 

transfer problems [35], is recalled here to explore the potential within DHNs. 

• A two-stage optimization procedure that is able to manage (i) the thermal energy delivery to 

different DHN regions according to different cost functions, and (ii) the thermal energy 

production unit. Plus, it is fast, scalable and suitable for real-time control applications.  

• A smart controller based on Model Predictive Control that uses the developed model to 

perform thermal peak shaving and network temperature reduction to increase network 
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efficiency. Since real-time control is typically applied to individual buildings or to production 

sites, a strategy that integrates production and distribution can contribute toward the 

advancement of the technology.  

To the best of the authors’ knowledge, these aspects have not been treated extensively or within an 

integrated procedure in the existing literature on DHNs. Such method fosters the exploitation of smart 

and digital technologies in order to bring low temperature, optimized DHNs to maturity.  
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2. Methods 

This section summarizes the research methods used in this work to develop a smart controller for 

large-scale DHNs with the ability to exploit consumer thermal capacity to achieve peak shaving and 

reduce network temperature. This procedure is illustrated in the block diagram in Figure 1.  

 

Figure 1. Block diagram of the method for the development of the smart controller for a large-scale DHN. The procedure 

includes the development of the region model and optimization algorithm, which are embedded in the MPC controller.  

 

The method involves neither extensive geographical details nor country-specific regulations, thus it 

can be easily applied to systems in different countries and areas. In this work, its demonstration is 

carried out on the DHN of the city of Västerås, in central Sweden. The Västerås DHN is supplied by 

a centralized production site – comprising a waste-to-energy Combined Heat and Power plant (CHP), 
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back-up boilers and thermal energy storage tanks – and distributes hot water to the city center and to 

six main peripheral areas within the county, namely Surahammar, Skultuna, Rönnby, Tillberga, 

Barkarö and Hallstahammar. A schematic representation of the system is given in Figure 2. It is 

possible to notice that the distribution network can be split into nine main pipelines. The total pipeline 

lengths to reach the external regions with reference to the central power plant are reported in Table 

1.  

 

Figure 2. Schematic representation of the Västerås district heating network.  

Table 1. External regions of the Västerås district heating network and related pipeline length with reference to the 

centralized production site. 

Region Pipeline length [km] 

Surahammar 31 

Skultuna 18.5 

Rönnby 11.5 

Tillberga 14.5 

Barkarö 5.5 

Hallstahammar 9 



9 

 

According to the scale-free, simplified model developed in [23], each peripheral region of the network 

is considered as a single aggregated user with a given mass at a uniform temperature T, which is an 

equivalent representation of its energy content. The model is represented by the thermal power 

balance in Eq. (1): 

𝑑𝑇

𝑑𝑡
= −

𝑈

𝐶
(𝑇 − 𝑇ext) +

1

𝐶
�̇� (1) 

where Text is the outdoor temperature and Q̇ is the thermal power actually transferred to each region 

through the substation heat exchanger. The aggregated heat transfer coefficient U and the aggregated 

heat capacity C of the region are identified with historical data available on an hourly basis at the 

main substations as reported in [23]. Since an optimization algorithm has to compute the system 

model multiple times to find the optimal solution, such a simplified model is required to implement 

an MPC controller in real cases due to its low computational effort. The model is used to calculate 

the heat storage potential of the region, by considering the amount of heat that can be added or 

retrieved from the baseline load in order to have an increase or decrease in temperature that is 

acceptable to the users, and by translating it into the SoC of the aggregated region. This constitutes 

the “model block” (Figure 1). 

The historical heat consumption of the city center is also available. However, since the center is 

relatively close to the power plant, it is easier to control its heat supply and comfort fulfillment, 

compared to the farthermost areas. Therefore, it is considered to be supplied according to the 

historical demand and is not included in the optimization.  

The “algorithm block” (described in Section 3) regards the formulation and analysis of an 

optimization algorithm that comprises two steps: 

1. Optimization of the thermal power to be delivered to each separate region with the goal of 

shaving the supply peaks over a future prediction horizon (e.g. three days). This is achieved 
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by exploiting each region as a battery and, therefore, by varying its SoC. The optimal heat 

that has to be supplied to each region is passed to step 2.  

2. Optimization of (i) the water mass flow rates in the various branches of the network and (ii) 

the supply temperature of the CHP plant, with the objective of minimizing the network 

temperature while keeping pumping costs down. In this case, the optimal heat calculated at 

the previous step has to be supplied to each region as a constraint of the optimization problem 

over the entire prediction horizon.  

The model block and algorithm block are incorporated in an economic MPC strategy [36] for the 

actual real-time control of the network. This consists of predicting the behavior of the system in a 

future time prediction horizon by means of the simplified model of the system itself and optimizing 

system management over the given horizon by solving a dynamic optimization problem [37]. The 

system is actually controlled with the first element of the optimal control sequence. At every given 

time-step, the system variables and the prediction of the disturbances are updated and the problem is 

solved again [30]. This continuous updating makes it possible to cope with the model approximations 

and with the influence of the disturbances.  

Similarly to the small-scale case study presented in [31], the feasibility of the developed method is 

finally tested in a Model-in-the-Loop (MiL) application in MATLAB®/Simulink®. The MPC block 

represents the actual controller and is used to control a detailed dynamic model of the real distribution 

network, which is developed and validated in [27]. This simulates the heat propagation of the real 

network and, at every calculation step, returns the estimation of the actual SoC for each region, which 

is then used as a new initial condition for solving the next optimization problem at the following step.  
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3. Double-stage optimization problem 

This section outlines the optimization procedure of the large-scale DHN. Firstly, the new concept of 

SoC of a region is explained and used to represent the potential of storage in the consumer heat 

capacity. Secondly, the heat supply to each region is optimized by means of a linear programming 

algorithm with the aim of shaving the heat distribution peaks. Lastly, the global optimization problem 

that calculates the optimal supply temperature and mass flow rates in the whole network is described. 

 

3.1 State of Charge concept 

A straightforward way to verify the indoor thermal comfort of buildings is to implement internal 

temperature monitoring which, in large networks, can be invasive and expensive. For this reason, 

other approaches are required to tackle and optimize systems such as the Västerås DHN.  

Numerous methods to accurately predict the thermal load of the consumers in a DHN are available 

in the literature: from a simple white-box model that describes heat demand as a function of outdoor 

temperature and social component [38] to modern black-box models with machine learning 

techniques (e.g. neural networks [39] and deep learning [40]) based on historical data. The advantages 

and disadvantages of these main model approaches [41] are briefly introduced in Table 2. 

It is possible to consider the historical or predicted load of each region as the baseline thermal power 

Q̇base, which guarantees the thermal comfort. Therefore, the following fundamental assumption has 

to be made in this work: the thermal load – represented in this case through hourly historical data of 

the main substations of the network – has the effect of maintaining precisely the required indoor 

comfort temperature in the aggregated region. The possibility to store/retrieve thermal energy in/from 

the consumer mass is based on the deviation from this comfort temperature. This approach is similar 

to that proposed in [42], in which the DHN heat load is an exogenous input and is required to maintain 

the indoor temperature at a set-point. Only the deviations from this heat load are considered to have 

an effect on the temperature variations.  
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Table 2. Main model approaches for the prediction of thermal load in district heating networks, with advantages and 

disadvantages. 

Approach Description Advantages Disadvantages 

White-box 

Thermal load forecast based on 

physical principles of buildings 

(conservation equations and detailed 

characteristic) 

Detailed dynamic simulation 

in each possible condition 

Costly, time consuming, 

requires high computational 

time and detailed 

information on all buildings  

Black-box 

Thermal load forecast based on 

available data of building historical 

behavior with statistical and machine 

learning methods 

Low computational time, 

good accuracy 

Requires large dataset, not 

suitable for unpredictable 

events or for conditions 

other than training set 

Gray-box 

Thermal load forecast based on 

parametrized models identified with 

data, combining physical and data-

driven knowledge  

Good accuracy, feasible 

computational time, model 

parameters have physical 

meaning 

Requires data and expert 

knowledge on system 

 

Firstly, the model equation Eq. (1) is rewritten with the incremental ratio to give Eq. (2): 

�̇� = C
∆𝑇

∆𝑡
+ U(𝑇 − 𝑇ext) (2) 

Secondly, the supplied thermal power is split into two contributions: the baseline load Q̇base which 

leads to a rise in equivalent temperature equal to ΔTbase, and the stored thermal power Q̇stored which 

leads to an additional rise – compared to baseline – equal to ΔTstored. Thus, Eq. (3) is obtained: 

�̇�base∆𝑡 + �̇�stored∆𝑡 = 𝐶(∆𝑇base + ∆𝑇stored) + 𝑈∆𝑡(𝑇 − 𝑇ext) (3) 

The heat that is actually stored in the region (i.e. Qstored), compared to the baseline heat (i.e. Qbase), is 

calculated in Eq. (4): 

𝑄stored = �̇�stored∆𝑡 = (�̇� − �̇�base)∆𝑡 = 𝑄 − 𝑄base (4) 

where Q is the actual heat supplied by the DHN through the substation heat exchanger. 
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The maximum heat that can be stored/taken in/from each region is defined by the maximum deviation 

from the temperature baseline that is acceptable to the users (i.e. that does not compromise the indoor 

comfort), namely ΔTstored,max, as expressed in Eq. (5): 

𝑄stored,max = 𝐶∆𝑇stored,max (5) 

In the work by Romanchenko et al. [42], the deviation above the set-point to estimate the heat storage 

capacity of the connected buildings is limited to 1 °C. In the present work, instead, a more 

conservative assumption is adopted: a maximum temperature deviation ΔTstored,max of 0.5 °C is 

assumed for the calculation of the heat storage potential of the aggregated consumer, so that thermal 

comfort is not jeopardized. Nevertheless, it is possible to repeat the analysis for different temperature 

deviations depending on the indoor comfort requirements and legislations related to each specific 

case.  

The SoC of each region is therefore defined by Eq. (6): 

SoC =
𝑄stored

𝑄stored,max − (−𝑄stored,max)
+ 0.5 =

𝑄stored,max + 𝑄stored
2𝑄stored,max

 (6) 

In this way, the SoC is equal to: 

• zero, when the maximum heat in absolute value has been retrieved and a greater subtraction 

of heat would lead to the violation of thermal comfort constraints;  

• 0.5, when no additional heat (compared to baseline) has been stored;  

• 1, when the maximum heat has been stored and a further indoor temperature increase cannot 

be accepted. 

The SoC is the state of the system and is influenced by the incoming thermal power that is stored and 

by the heat losses to the outside. Its variation in time is expressed by the following differential 

equation: 
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𝑑(SoC)

𝑑𝑡
=

�̇�stored
2𝑄stored,max

−
�̇�loss

2𝑄stored,max
 (7) 

The second term Q̇loss represents the additional heat losses compared to baseline – it is positive if the 

SoC is higher than the baseline, and negative if it is lower. This is due to the fact that the indoor 

temperature, together with the SoC, is increased or decreased by ΔTstored. It is possible to formulate 

these additional heat losses by combining Eqs. (5) and (6) and knowing that the stored heat is equal 

to the heat capacity coefficient C multiplied by ΔTstored. Eqs. (8) and (9) are obtained as follows: 

∆𝑇stored = ∆𝑇stored,max(2 ∙ SoC − 1) (8) 

�̇�loss = 𝑈∆𝑇stored = 𝑈∆𝑇stored,max(2 ∙ SoC − 1) (9) 

The state function Eq. (7), together with Eqs. (4), (5) and (9), can be written in a discretized form at 

time-step k as in Eq. (10): 

SoCk+1 = SoCk +
(�̇�k − �̇�base,k)∆𝑡

2𝐶∆𝑇stored,max
−
𝑈∆𝑡

𝐶
(SoCk −

1

2
) (10) 

To sum up, the assumptions that define the SoC concept are detailed as follows: 

• each region is an aggregated set of end-users characterized by an equivalent temperature 

representing its energy content; 

• the baseline thermal load maintains the set-point comfort temperature, which can vary over 

the day depending on customer requirements, corresponding to a region SoC equal to 0.5; 

• maximum acceptable deviations from the comfort temperature are limited to ±0.5 °C, related 

to variations in the SoC in the range 0 to 1; 

• these variations are obtained by regulating the heat supplied to each region and storing energy 

in or retrieving energy from its heat capacity, without altering thermal comfort.  

In the light of this, the discretized state function Eq. (10) representing the evolution of the SoC of 

each region is the core of the optimization problem formulation outlined in Section 3.2.  
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3.2 Aggregated region optimization 

3.2.1 Problem definition 

The first stage of the optimization problem aims to optimize the thermal power supplied separately 

to each region of the DHN. The problem is written in a state-space form for a given prediction horizon. 

Since the thermal dynamics in large-scale DHNs such as the Västerås network is relatively long and 

can reach several hours, a time horizon of at least one day is required to capture all its effects. In order 

to illustrate the results of the optimization algorithm more extensively, a prediction horizon of three 

days is considered in this section. The discretized state function that represents the variation of the 

SoC for a time-step is given by Eq. (10). The initial condition of the problem is the known value of 

the SoC at the beginning of the prediction horizon SoC0. The input (i.e. manipulated variable) of the 

system is the actual thermal power sent to the region Q̇k over the prediction horizon, while the baseline 

load (which depends on the external conditions) Q̇base,k is the disturbance. 

Since the SoC, by definition, cannot be lower than 0 or higher than 1 and the supplied thermal power 

must be positive, it is necessary to include the following constraints: 

0 ≤ SoC ≤ 1 (11a) 

�̇� ≥ 0 (11b) 

By renaming SoC as x (system state), Q as u (system input) and Qbase as d (disturbance), and by using 

the following coefficients for the sake of readability: 

𝛼 =
∆𝑡

2𝐶∆𝑇stored,max
 (12a) 

𝛽 =
𝑈∆𝑡

𝐶
 (12b) 

it is possible to write the dynamic problem given by Eqs. (10–12) in the state-space form: 
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{
 
 

 
 𝑥k+1 = (1 − 𝛽)𝑥k + 𝛼𝑢k − (𝛼𝑑k −

𝛽

2
)

𝑥0 = SoC0
0 ≤ 𝑥k ≤ 1
𝑢k ≥ 0

        ∀ 𝑘 = 1…𝑁 (13) 

where N is the number of time-steps of the prediction horizon. 

This is a Dynamic Linear Programming problem that can be transformed [43] into the following 

Linear Programming (LP) problem with the vector of variables [u0, x1, u1, x2 … xN-1, uN-1, xN]:  

{
 
 
 
 

 
 
 
 

min
𝑢,𝑥

𝑓(𝑢, 𝑥)

−𝛼𝑢0 + 𝑥1 = (1 − 𝛽)𝑥0 − (𝛼𝑑0 −
𝛽

2
)

(1 − 𝛽)𝑥k − 𝛼𝑢k + 𝑥k+1 = −(𝛼𝑑k −
𝛽

2
)   

−𝑥k ≤ 0
𝑥k ≤ 1
−𝑢k ≤ 0

  ∀ 𝑘 = 1…𝑁 − 1 (14) 

The problem consists of calculating the values of the states and inputs for the time-steps of the 

prediction horizon that minimize the cost function f(u,x). It can be readily solved with the standard 

algorithms of LP (e.g. simplex algorithm).  

 

3.2.2 Analysis 

The LP problem represented in Eq. (14) is analyzed by implementing different cost functions and by 

comparing the results. The problem is solved for three representative days (i.e. January 2017) with 

time-steps of one hour for the region of Surahammar, though similar considerations can be drawn for 

the other areas taken separately.  

Firstly, a preliminary test, namely Case 0, is performed by minimizing the total thermal energy 

supplied to the region over the prediction horizon. Figure 3 illustrates (i) the optimal thermal power 

according to this objective function compared to the historical data and (ii) the SoC in both cases. It 

is worth remembering that the latter is constant and equal to 0.5 in the historical condition, as it 
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represents the baseline, in which the indoor temperature is maintained at exactly the set-point required 

for comfort. The obtained solution is trivial: the SoC of the region is brought to the lower boundary 

as soon as the simulation starts, in order to reduce the required heat as well as the thermal losses.  

 

Figure 3. Historical and optimal thermal power and State of Charge as solutions of the Linear Programming problem. 

Case 0 considers the minimization of total heat.  

 

This is equivalent to lowering the set-point temperature by 0.5 °C, and is impracticable and 

non-relevant. 

In this work, the main interest is to achieve peak shaving but also a smooth evolution of the thermal 

power supplied, in order not to put the production and distribution systems under stress with rapid 

changes in the operating parameters. For this purpose, four different cost functions are implemented 

as follows: 

1. minimization of the maximum heat over the prediction horizon, with no regard to the input 

sequence over time; 

2. minimization of the maximum thermal power variation between consecutive time-steps (in 

absolute value), in order to reduce sudden changes; 

3. minimization of the maximum range of input variation, which is defined as the difference 

between the maximum and minimum values of the thermal power over the prediction horizon; 
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4. minimization of the total variation of the inputs, obtained from the total of all the thermal 

power variations (in absolute value) between consecutive time-steps. 

These cases and the related results are reported in Table 3 (which also includes Case 0) and illustrated 

in Figure 4. The percentage peak shaving and total energy reduction, calculated with reference to the 

historical baseline, are the indicators considered for comparing the outcomes of the analysis. It should 

be remembered that the objective is only related to the minimization of the thermal peak or of the 

thermal power variation, and not to energy reduction.  

For all the cases, the sequences of optimal inputs (thermal power supplied) and optimal states (SoC 

of the region) are represented. It is possible to state that the optimization allows the thermal peaks to 

be reduced to different degrees by exploiting the heat capacity of the regions. As a matter of fact, the 

SoC fluctuates between the lower and upper boundaries when it is necessary to store or retrieve heat. 

Cases 1, 3 and 4 present a reduction in peak demand of more than 16%. Besides, it is interesting to 

note that the objective is achieved with no additional energy consumption (with the exception of 

Case 2 for which, nevertheless, the increase in consumption is negligible), demonstrating the 

feasibility of the approach. 

 

Table 3. Results of the optimization of the region heat supply with different objective functions. 

Case Objective Function Peak shaving Energy reduction 

0 Minimize the total heat  min
𝑢,𝑥

∑ 𝑢kk  1.59% 2.26% 

1 
Minimize the maximum 

heat over the horizon 
min
𝑢,𝑥

max
k
𝑢k 16.21% 0.13% 

2 
Minimize the maximum 

absolute value 
min
𝑢,𝑥

max
k
|𝑢k − 𝑢k−1| 13.17% -0.37% 

3 
Minimize the maximum 

range of the input variation 
min
𝑢,𝑥

(max
k
𝑢k −min

k
𝑢k) 16.21% 0.42% 

4 
Minimize the total variation 

of the input 
 min
𝑢,𝑥

∑ |𝑢k − 𝑢k−1|k  16.21% 0.25% 
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Figure 4. Historical and optimal thermal power and State of Charge as solutions of the Linear Programming problem. 

Cases 1 to 4 (the details are reported in Table 3). 

 

In the former case, the input and, consequently, the system state are subjected to rapid fluctuations, 

such as the modulation of thermal power to 40% of the maximum value in a few hours. This is 

coherent with the aim of minimizing maximum input without including any information on its 

variation in the cost function. This behavior, however, is not preferable due to the potential difficulties 

in performing such regulation. 

In Case 3, such fluctuations are reduced to 80% of the maximum input in one-hour steps, since the 

scope is to keep the range of variation of the thermal power as low as possible. In the latter case, 

instead, the evolution of the optimized thermal power is smoother than before, providing slower 
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changes in supply by regulating the SoC accordingly. Plus, it is possible to notice that Case 4 achieves 

both the same peak shaving and the same range of variation as Case 3, while showing more benefits. 

On the other hand, the sequence of inputs in Case 2 avoids fast changes of the parameters from one 

step to the next, but the peak shaving obtained is lower than the previous cases. Overall, the results 

shown in the graphs are coherent with the cost functions. 

In the light of these reasons, the cost function of Case 4 is chosen in order to proceed with the 

implementation. Nonetheless, it is beneficial to show that the problem can be adapted with different 

objectives – even a combination of the previous goals – depending on the need.  

The optimization, extended to the whole network, can prevent the occurrence of such demand peaks 

and, consequently, allow the system operator to avoid turning on back-up boilers at the production 

site, leading to a significant reduction in operating costs and energy consumption. Hence, the LP 

problem, which constitutes the first stage of the global optimization algorithm, is applied to all the 

six regions of the Västerås DHN. The sequence of optimal values of thermal power that should be 

supplied at the substation heat exchanger – hereinafter defined as Q̇LP – and the optimal SoC of each 

region – defined as SoCLP – are obtained and given as inputs to the second stage of the optimization 

algorithm (Section 3.3).  

 

3.3 Global network optimization 

The second stage of the optimization problem aims to optimize the control variables of the global 

DHN in order to reduce the supply temperature and move toward 4th generation district heating. This 

has to be achieved in compliance with the optimal heat supply to each region as calculated previously, 

i.e. Q̇LP is a constraint of the new problem.  

 

3.3.1 Problem definition 
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The states of the network, interpreted as the SoC of the regions, have been optimized in the first stage 

explained above (i.e. SoCLP). The problem at this second stage is characterized as follows: 

• The optimization variables are the mass flow rates sent to the six regions and the supply 

temperature at the power plant at each step of the prediction horizon, which comprises N 

time-steps as before. Therefore, the number of variables is (6 + 1)•N.  

• As previously mentioned, the equality constraints are the actual supply of the optimal heat 

Q̇LP,i,k for each time-step k and each region i. This is defined by Eq. (15):  

�̇�i,k𝑐(𝑇S,i,k − 𝑇R,SP) − �̇�loss,i,k = �̇�LP,i,k (15) 

where ṁi,k is the mass flow rate to region i and time-step k and TS,i,k is the temperature that the 

water reaching region i at time-step k had when it left the power plant, some time before. The 

return temperature from the substation heat exchanger TR,SP is assumed equal to a set-point of 

35 °C, as achieved in [27]. Similarly to [30], the heat losses from the network pipelines Q̇loss,i,k 

are given by Eq. (16): 

�̇�loss,i,k =
(𝑇S,i,k − 𝑇soil)

𝑅tot,i
 (16) 

where Tsoil is the soil temperature, as the pipelines are typically underground, and Rtot,i is the 

thermal resistance of the aggregated pipeline that conducts to the substation heat exchanger 

[27,30]. In this regard, the actual configuration and properties of the network (e.g. diameters, 

lengths and insulation) are collected in a database and considered in this calculation.  

• The inequality constraints are that, for each pipe segment j of the network (Figure 2), the 

circulating mass flow rate ṁj,k has to be positive but lower than the maximum mass flow rate 

allowed (Eq. (17a)). Moreover, the supply temperature has to be higher than the return 

temperature (Eq. (17b)).  

0 ≤ �̇�j,k ≤ �̇�j,max (17a) 
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𝑇S,i,k > 𝑇R,SP (17b) 

• The cost function to be minimized is the maximum value of supply temperature over the 

prediction horizon. This leads to a reduction in heat losses to the soil while meeting the 

constraints. Under the same heat supply, as the temperature decreases, the mass flow rate 

increases and – as a consequence – so do the pumping costs, which depend on the third power 

of the mass flow rate itself. For this reason, a penalty factor proportional to the pumping 

power, calculated per region i at time-step k by Eq. (18) as in [30], is added to the objective 

function in order to discourage impracticable flow rates. 

𝑃pump,i,k =∑ [
8𝑓j𝐿j

𝜋2𝜌2𝐷j
5 ∙

1

𝜂pump
∙ �̇�j,k

3]
j

 (18) 

where j is the index representing the pipeline segments that reach the i-th region, fj, Lj and Dj 

are friction factor, length and diameter the j-th pipeline segment, respectively, ρ is the water 

density, and ηpump is the pump efficiency. 

• The problem is nonlinear. Since it is a Non Linear Programming (NLP) case, it is solved with 

the Interior Point algorithm available in MATLAB®.  

It is important to notice that the temperature that is actually supplied to each region at time k is not 

the supply temperature at the power plant at the same time k, since there are significant time delays 

(e.g. several hours) from production to actual delivery in large-scale networks. In the literature, a 

large number of papers considers this issue with different approaches. For instance, Laakkonen et al. 

[44] propose an optimization method for a DHN supply temperature based on brute force and 

calculates the heat load and return temperatures by means of a neural network. Additionally, the time 

delay from production to supply are based on the actual distance between the consumer and the plant. 

Otherwise, the temperature propagation can be treated by means of a phase and amplitude variation 

due to time delays and heat loss [45]. Similarly, in this work the simplified model of the network, 

which has to be incorporated into the global optimization problem embedded in an MPC controller, 
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includes a simplified representation of the phenomena to avoid an increase in computational 

complexity. While the authors of [27] adopt a fixed time delay selected as an approximation derived 

from historical data, the present paper implements a procedure to calculate the actual time delays to 

each region, which depend on the mass flow rates in the different positions of the network and at 

different time-steps. The basic assumption is that the temperature front moves at the same speed as 

the water inside the pipelines, calculated by Eq. (19):  

𝑤 =
4�̇�

𝜌𝜋𝐷2
 (19) 

At each calculation step, the position in the network of the supply temperature front sent at the 

previous time-steps is saved and continuously updated in a global matrix. Once this is known, it is 

possible to evaluate the actual temperature of the water that reaches the different regions and, 

therefore, to create the proper constraints for the optimization.  

 

3.3.2 Analysis 

The double-stage optimization algorithm that involves the entire network is analyzed by solving the 

problem for three representative days (i.e. January 2017). The LP problem and the NLP problem are 

solved in sequence as summarized in Section 2. The prediction horizon is three days and the time-step 

is one hour.  

Firstly, it is of key importance to verify the applicability of the algorithm by checking that all the 

constraints are met. Figure 5 represents (i) the supplied thermal power according to the historical 

dataset and (ii) the thermal power that is actually delivered to the six regions with the mass flow rates 

and supply temperature calculated by the optimization algorithm. The maximum difference between 

the actual thermal power supplied with these parameters and that separately calculated by the LP and 

given as a constraint to the NLP is, in all cases, lower than 0.1%. Moreover, as expected, for all 
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network regions the peak of the actual power is significantly reduced compared to that before the 

optimization, if the given prediction horizon is considered.  

The actual values of peak shaving for each region vary from 7.3% to 16.2% and are reported in Table 

4. The table also reports the percentage reduction in the thermal power variation range (RVR), 

calculated by Eq. (20) as the difference between maximum and minimum values over the given 

horizon, compared to the historical case: 

𝑅𝑉𝑅 = (1 −
�̇�max,opt − �̇�min,opt

�̇�max,hist − �̇�min,hist
) ∙ 100 (20) 

The optimization leads to a smoother and more regular operation (i.e. the range is reduced by 44% to 

77% depending on the region), which is desirable for this kind of system. Hence, these outcomes 

show that the results of the optimization are coherent with the constraints and objectives.  

 

Figure 5. Thermal power supplied according to the historical dataset and to the optimization algorithm (new). Thermal 

peak shaving and reduction in the heat variation range are achieved in all regions. 
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Table 4. Results of peak shaving and range of variation reduction of the six external regions of the Västerås district heating 

network as obtained with the operating parameters calculated by the optimization algorithm. 

Region Peak shaving Variation range reduction (RVR) 

Surahammar 16.2% 59.3% 

Skultuna 11.2% 51.3% 

Rönnby 16.1% 48.3% 

Tillberga 12.1% 77.6% 

Barkarö 7.3% 44.5% 

Hallstahammar 14.8% 53.9% 

 

The range of variation of the mass flow rates in the nine main distribution pipelines of the network, 

as well as their boundaries given by historical data, are represented in Figure 6. It is confirmed that 

the operating constraints are respected, and the flows are not subjected to impracticable variations. 

 

 

Figure 6. Actual range of variation of the mass flow rate compared to the constraints for nine pipeline segments of the 

district heating network. All values of mass flow rates respect the operating constraints. 
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The entire two-stage optimization algorithm with prediction horizons of one, two and three days has 

a computational time of 10 s, 50 s and 120 s, respectively. Hence, its implementation as part of an 

MPC controller that updates its variables and performs the calculation every hour is feasible. The 

application and testing of this integrated method in an MiL configuration is discussed in Section 4. 
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4. Global network predictive control 

The practicability of the developed method is tested in an MiL application in MATLAB®/Simulink®. 

As represented in Figure 1, the algorithm is included in an MPC block which controls a detailed 

dynamic model of the Västerås DHN. This serves as a test bench for analyzing the results and, 

eventually, suggesting smarter strategies for control, operation and design. Firstly, the detailed model 

and the MPC control implementation are described. Secondly, the discussion of their results is 

reported. 

 

4.1 Global network detailed model 

The detailed dynamic model of the global network [27] was originally developed in Dymola [46], 

which exploits the programming language Modelica and is widely used in simulating dynamic 

systems [47]. The individual components of a DHN, such as pipes, valves and pumps, are modeled 

by considering the governing physical phenomena. For instance, the pipe model is represented by the 

energy balance dynamic equation applied to the pipe wall and to the water contained in each control 

volume in which the pipe is divided. The heat transferred to the consumer and the heat lost to the 

environment are included in the equation. These components are connected according to the network 

configuration to form the global model. Its validation with historical network data (i.e. temperature 

and mass flow rate supplied from the CHP, soil temperature and thermal load), provided by the system 

operator, is reported in detail by Zimmerman et al. [27]. This validation procedure shows that the 

model is reliable and effectively represents network temperature dynamics, heat propagation and 

losses over pipeline lengths of several kilometers, as is the case for the present network (Table 1). 

Indeed, the simulated supply and return temperatures are in good agreement with the actual trends.  
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4.2 Problem definition 

The main peculiarity of MPC is the receding time horizon strategy, according to which, at each 

time-step, the actual measurement of the system state and the new prediction of the disturbances are 

considered for updating and solving a new optimization problem. In this way, the influence of the 

prediction uncertainty and model inaccuracies on the actual control can be reduced step-by-step.  

In this work, the model outlined in Section 4.1 is controlled with the optimal inputs calculated by the 

optimization module (i.e. mass flow rates to the regions and supply temperature from the power 

plant). The model simulates the heat propagation of the real network and, at every calculation step, 

has to return the estimation of the actual SoC for each region. These are used as new initial conditions 

for the next optimization problem. However, the current system configuration does not allow the end-

user indoor temperatures to be monitored. Hence, another fundamental assumption, explained below, 

is necessary to update the SoCs of the regions and correctly perform real-time control. The thermal 

power contributions also reported below are schematized in a qualitative way in Figure 7. 

The optimization algorithm of the MPC receives the historical or predicted heat load as a disturbance 

– Q̇base,i for each region i – and calculates the network operating parameters that deliver the optimal 

thermal power – Q̇LP,i,k for region i and time-step k – which in turn includes the optimal storage by 

considering a set-point return temperature of 35 °C [27]. Nonetheless, there is typically a difference 

between the predicted load and that actually consumed, due to various factors: 

• errors in the prediction of the external temperature and, consequently, the thermal demand; 

• different behavior of part of the consumers (e.g. a building is not occupied and does not require 

heating). 

Additionally, part of the consumers may decide not to actuate the storage, for instance by exploiting 

the space heaters differently or slightly varying the indoor comfort. 
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Figure 7. Qualitative representation of the contributions to the optimal and actually consumed thermal power. The 

quantities Q̇stored and ΔQ̇ can be positive (full area) or negative (dashed area). The total heat stored in the SoC is represented 

by the sum of Q̇stored and ΔQ̇ in the current time-step. 

 

These random contributions are included in the current analysis by estimating the difference ΔQ̇i,k 

between the predicted thermal power and the thermal power actually consumed as a fraction of Q̇base 

according to a uniform distribution in the range ± 5%. This implies a return temperature – TR,i,k from 

region i at time-step k – that is different from the abovementioned set-point and is returned by the 

detailed network model once the actual thermal power Q̇actual,i,k has been consumed. Eq. (21) 

expresses the relation between the thermal power actually consumed and this new return temperature. 

It is worth noting that this balance equation is analogous to Eq. (15).  

�̇�i,k𝑐(𝑇S,i,k − 𝑇R,i,k) − �̇�loss,i,k = �̇�actual,i,k (21) 

The subtraction of Eq. (15) from Eq. (21) leads to an expression of ΔQ̇i,k in terms of the difference 

between the actual return temperature and the set-point return temperature as follows:  

∆�̇�i,k = �̇�actual,i,k − �̇�LP,i,k = �̇�i,k𝑐(𝑇R,SP − 𝑇R,i,k) (22) 

In the current real system configuration, it is not possible to quantify and separate the random 

contributions listed above. At the same time, it is necessary to update the SoC with a new estimation. 
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Therefore, it is assumed that the sum (with its corresponding sign) of the random contribution ΔQ̇i,k 

is entirely stored in the heat capacity of the aggregated consumer and modifies the SoC foreseen by 

the optimization module. According to Eq. (22), the difference in the return temperature gives a 

measurement of this additional heat which, in turn, effectively modifies the predicted SoCs of the 

network – SoCLP,i,k for region i and time-step k – as in Eq. (23):  

SoCactual,i,k = SoCLP,i,k +
�̇�i,k𝑐(𝑇R,SP − 𝑇R,i,k)∆𝑡

2𝐶∆𝑇stored,max
 (23) 

where SoCactual,i,k represents the new measurement of the state of region i. It is also the new initial 

condition for the optimization problem at time-step k + 1, according to the receding time horizon 

strategy. This is applied to all the regions and the simulation proceeds for the desired period.  

 

4.3 Results 

The MiL application comprising the detailed network model and the MPC controller is illustrated in 

Figure 8. The results of the real-time control with the developed MPC strategy are shown for the first 

week of February 2017. The outdoor temperature, which greatly affects the baseline heat demand, is 

depicted in Figure 9. 

A prediction horizon of one day is adopted. The time delays to reach the different regions of the 

network are in the range of 2 h to 10 h, with the considered operating parameters. Hence, such a 

prediction horizon includes the propagation of the thermal power produced in the power plant and 

captures the main system dynamics, while reducing the simulation time. Furthermore, since the model 

incorporates the distribution line to the furthest reaching areas in the supply network, the dynamics 

of the central area of Västerås remains within acceptable limits, and therefore indoor comfort is 

achievable as well. 
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Figure 8. Model-in-the-Loop application of the Västerås district heating network controlled with the proposed control 

strategy in the MATLAB®/Simulink® environment. The MPC controller, detailed network model and state update sections 

are highlighted. 

 

Figure 9. Historical outdoor temperature over the simulation period. 

 

Figure 10 and Figure 11 depict the operating parameters of the region of Skultuna, taken as a 

representative example, in terms of mass flow rates and temperatures supplied directly to the main 

substation heat exchanger. The comparison between the historical and new values shows that the 

MPC controlled variables decrease: this leads to lower consumption for the pump and lower heat 
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losses from the pipelines. For instance, the mass flow rate to Skultuna is decreased by 23% but similar 

results are obtained in the other cases. Moreover, the optimal mass flow rate is subjected to smaller 

variations over the simulation period, unlike the previous management conditions in which the 

operation of the pump changes and fluctuates more significantly. The supply temperature is also more 

constant. The same considerations can be drawn for the other regions of the DHN.  

 

Figure 10. Historical and new water mass flow rates to Skultuna. The MPC reduces the mass flow rate.  

 

Figure 11. Historical and new supply temperatures to Skultuna. The MPC reduces the distribution temperature and, thus, 

the heat losses. 

 

The first part of the simulation shows a higher temperature that derives from the fact that the optimal 

supply temperature reaches the substation heat exchanger some hours after it outflows from the power 

plant, due to the network time delays. This diminishing evolution in the first simulation time-steps is 

different for the various regions, depending on the distance and water velocity. Indeed, it is underlined 



33 

 

that, even though they are supplied by the same power plant, the actual temperatures that reach the 

substation heat exchanger are different due to the different rates of heat transfer from the pipelines to 

the soil, which depend on the network topology, length and demand.  

In regard to the effects that the outdoor temperature imposes upon the controller, Figure 12 illustrates 

the power plant supply temperature, which is valid for all regions, as a function of external 

environment temperature. The trend obtained with the MPC, highlighted by the regression fit lines 

added to the graph, is significantly decreased compared to baseline. Furthermore, the new supply 

temperature is maintained more uniform, especially when the outdoor temperature is relatively low. 

Indeed, the absolute value of the slope decreases from 1.42 to 0.12. As far as this simulation period 

is concerned, the water is supplied at an optimal temperature lower than 80 °C, while in the original 

management strategies it varies between 80 °C and 95 °C. The relative reduction in the difference 

between supply temperature and soil temperature (which is assumed as 10 °C in the simulations), 

which gives the perception of a reduction in heat losses from the pipelines, ranges from a minimum 

of 3.1% for higher outdoor temperatures to a maximum of 20% for lower outdoor temperatures, with 

an average reduction of 8.8% over the considered time period. 

Other simulation periods can lead to further improvements, since the historical supply temperature – 

according to the network data – can reach values up to 110 °C. Hence, the secondary goal of the 

optimization, which consists of reducing the heat losses, is successfully implemented. This makes the 

roadmap toward low-temperature district heating clearer and more straightforward.  

Figure 13 represents the real return temperature from the substation heat exchanger of the region of 

Skultuna, compared to the baseline case and to the set-point considered for the optimization. The 

return temperature fluctuates around the set-point, proving the acceptability of the assumption made. 

In addition, it is lower than the historical data, giving its contribution to the general trend of decreasing 

the pipeline temperature. It is also possible to notice that the return temperature is always maintained 
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above the threshold of 30 °C, which is preferable for the global system operation. Similarly, these 

results are valid for the other regions of the DHN.  

 

 

Figure 12. Historical and new data of the supply temperature from the power plant with the related regression fit lines. 

The minimum, average and maximum reductions in the difference between supply and soil temperature are 3.1%, 8.8% 

and 20%, respectively. 

 

 

Figure 13. Historical and new return temperatures from Skultuna, compared to the set-point considered for the 

optimization. 
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Overall, the optimal control parameters determined by the MPC are able to achieve the primary 

objective of the analysis, which is to shave the peaks of the thermal power behavior by exploiting the 

building heat capacity and without endangering the indoor comfort. This is demonstrated by Figure 

14, which illustrates the historical and new thermal power actually delivered. The heat supplied is 

subjected to greater fluctuations compared to the analysis reported in Section 3.3.2 because the real-

time MPC control considers the deviation of the heat consumed from that predicted, which adds 

uncertainty to the overall performance of the proposed approach. This happens also due to the 

receding time horizon strategy, according to which the optimization is repeated at each time-step with 

a continuous update of the variables and disturbance prediction.  

 

Figure 14. Historical and new thermal power to the regions. The MPC achieves peak shaving in all regions. 
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Nevertheless, these results are achieved by adopting a conservative estimation of the heat capacity of 

the regions [23] and a safe maximum deviation of their equivalent indoor temperature, i.e. 0.5 °C. A 

more significant peak shaving could be obtained by increasing this parameter or by testing more 

intense demand side management measures. Furthermore, this integrated approach and the presented 

set of tools (aggregated model of the region, optimization algorithm and network simulator) can lead 

to promising results also in terms of the exploitation of distributed thermal storage devices. For 

instance, the region of Skultuna achieves the lowest level of peak shaving and might benefit from a 

bigger storage potential. The placement of a storage tank in this area, as well as in other key portions 

of the system, might positively affect the overall network management.  

In summary, these considerations can be useful to DHN companies and system operators regarding 

efficiency improvement and energy saving. Indeed, the presented results can be easily exported to 

real applications by implementing the proposed MPC as network supervisory controller, without the 

need to modify the network configuration or carry out extensive investments.  

Nevertheless, this work has some limitations that can be addressed in future research: 

• The analysis is performed at main distribution network level, which means that only the main 

branches of the network supplying the peripheral regions are considered. The allocation of 

this thermal power to each individual building comprised in the region has to be regulated by 

another level of control.  

• The SoC of each region is updated by assuming that the uncertainty about the thermal demand 

affects the SoC itself and not the indoor comfort. It is possible to install measurement devices 

in a small portion of the network and conduct experimental tests in order to better validate 

these results, which can be then extended to the entire system. 
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5. Conclusions 

The heating and cooling sector has the chance to become more efficient and to reduce carbon 

emissions in populated areas if innovative management and control approaches are adopted. A 

promising strategy for district heating networks consists of exploiting the thermal capacity of the 

buildings to optimize energy supply and reduce peak demand.  

In this work, a Model Predictive Controller exploiting the receding time horizon approach for large-

scale district heating systems was developed and tested on a digital twin of the network of Västerås, 

Sweden. This controller is fast and scalable, and it is able to include any section of a network for 

which basic consumption data is available, since it does not require a long model tuning procedure. 

Moreover, it updates the global network optimization at every given time-step (i.e. one hour) in order 

to reject prediction errors and improve control efficiency. It performed (i) the minimization of the 

peaks of the heat supplied to each region by considering it as a thermal battery with a State of Charge, 

and (ii) the minimization of the network temperature. The analysis of the approach and the results 

showed that the method is applicable, and the goals have been achieved. The peak shaving is up to 

16% and the mass flow rates are reduced by up to 23% with a consequent significant reduction in 

pumping costs. Furthermore, the supply temperature is decreased to values lower than 80 °C with the 

difference between distribution and soil temperature being reduced by up to 20%, in turn leading to 

lower losses from the pipelines. 

The outcomes of this work can have multiple benefits for district heating operators and stakeholders 

in different countries: 

• to assess the storage potential in systems that lack extensive data and information on the 

building characteristics; 

• to propose new planning and management strategies of the thermal power distribution in order 

to reduce the thermal peaks in the plant operation; 
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• to suggest the installation of new storage devices (e.g. water storage tanks), if considered 

beneficial in increasing the heat capacity and, consequently, the storage potential of a defined 

area and in further improving the operation and management; 

• to understand the state of the network and to control the heat supply to the furthest 

neighborhoods.  

The implementation of these aspects will be investigated in future studies. It will also be possible to 

exploit the potentialities of the approach to a greater extent by means of an improved monitoring of 

the network State of Charge. Furthermore, the proposed procedure will be scaled and implemented 

fractally, in order to demonstrate a single methodology potentially applicable to any kind of heating 

network, from the micro-scale (i.e. building level) to the macro-scale (i.e. city level). 

This integrated methodology can encourage (i) the transition of existing district heating toward low 

temperature, optimally managed and automatized networks, and (ii) the spread of smart (e.g. 

predictive) control architectures, which enable the digitalization of the heating sector. This could lead 

to a globally connected system in which the energy is produced, stored and distributed in an optimal 

way.  
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Nomenclature   

C  aggregated heat capacity coefficient [kJ °C-1] 

D  pipe diameter [m] 

d  system disturbance [kW] 

f  pipe friction factor [-] 

L  pipe length [m] 

ṁ  mass flow rate [kg s-1] 

N  number of time-steps [-] 

P  power [kW] 

Q̇  thermal power [kW] 

Q  heat [kJ] 

Rtot  thermal resistance [°C kW-1] 

RVR  reduction in thermal power variation range [%] 

SoC  State of Charge [-] 

T  temperature [°C] 

t  time [s] 

U  aggregated heat transfer coefficient [kW °C-1] 

u  system input [kW] 

w  water speed [m s-1] 

x  system state [-] 

ΔQ̇  thermal power difference [kW] 
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ΔT  difference of temperature [°C] 

α  first coefficient for the state-space dynamic problem [kW-1] 

β  second coefficient for the state-space dynamic problem [-] 

ρ  water density [kg m-3] 

η  efficiency [-] 

 

Subscripts 

actual  actual 

base  baseline (to keep the comfort conditions) 

ext  outdoor 

hist  historical 

i  region i 

j  pipeline segment j 

k  time-step k 

loss  heat loss 

LP  referred to the solution of the Linear Programming problem 

max  maximum 

min  minimum 

opt  optimal 

pump  pump 

R  return 



48 

 

S  supply 

soil  soil 

stored  stored in the thermal mass 

 

Acronyms 

CHP  Combined Heat and Power 

DHN  District Heating Network 

LP  Linear Programming 

MiL  Model-in-the-Loop 

MPC  Model Predictive Control 

NLP  Non Linear Programming 

SoC  State of Charge 


