The aim of this work is to show that a significant increase of the efficiency of a Wave Energy Converter (WEC) can be achieved already at an early design stage, through the choice of a turbine and control regulation, by means of an accurate Wave-to-Wire (W2W) modeling that couples the hydrodynamic response calibrated in a wave flume to a Hardware-In-the-Loop (HIL) test bench with sizes and rates not matching those of the system under development. Information on this procedure is relevant to save time, because the acquisition, the installation, and the setup of a test rig are not quick and easy. Moreover, power electronics and electric machines to emulate turbines and electric generators matching the real systems are not low-cost equipment. The use of HIL is important in the development of WECs also because it allows the carrying out of tests in a controlled environment, and this is again time- and money-saving if compared to tests done on a real system installed at the sea. Furthermore, W2W modeling can be applied to several Power Take-O (PTO) configurations to experiment dierent control strategies. The method here proposed, concerning a specific HIL for testing power electronics and control laws for a specific WECs, may have a more general validity.

An Iterative Refining Approach to Design the Control of Wave Energy Converters with Numerical Modeling and Scaled HIL Testing / Delmonte, Nicola; Robles, Eider; Cova, Paolo; Giuliani, Francesco; Xavier Faÿ, François; Lopez, Joseba; Ruol, Piero; Martinelli, Luca. - In: ENERGIES. - ISSN 1996-1073. - 13:10(2020), pp. 1-19. [10.3390/en13102508]

An Iterative Refining Approach to Design the Control of Wave Energy Converters with Numerical Modeling and Scaled HIL Testing

Nicola Delmonte;Paolo Cova;Francesco Giuliani;
2020-01-01

Abstract

The aim of this work is to show that a significant increase of the efficiency of a Wave Energy Converter (WEC) can be achieved already at an early design stage, through the choice of a turbine and control regulation, by means of an accurate Wave-to-Wire (W2W) modeling that couples the hydrodynamic response calibrated in a wave flume to a Hardware-In-the-Loop (HIL) test bench with sizes and rates not matching those of the system under development. Information on this procedure is relevant to save time, because the acquisition, the installation, and the setup of a test rig are not quick and easy. Moreover, power electronics and electric machines to emulate turbines and electric generators matching the real systems are not low-cost equipment. The use of HIL is important in the development of WECs also because it allows the carrying out of tests in a controlled environment, and this is again time- and money-saving if compared to tests done on a real system installed at the sea. Furthermore, W2W modeling can be applied to several Power Take-O (PTO) configurations to experiment dierent control strategies. The method here proposed, concerning a specific HIL for testing power electronics and control laws for a specific WECs, may have a more general validity.
2020
An Iterative Refining Approach to Design the Control of Wave Energy Converters with Numerical Modeling and Scaled HIL Testing / Delmonte, Nicola; Robles, Eider; Cova, Paolo; Giuliani, Francesco; Xavier Faÿ, François; Lopez, Joseba; Ruol, Piero; Martinelli, Luca. - In: ENERGIES. - ISSN 1996-1073. - 13:10(2020), pp. 1-19. [10.3390/en13102508]
File in questo prodotto:
File Dimensione Formato  
energies-13-02508-v2.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 9.27 MB
Formato Adobe PDF
9.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2876385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact