We prove some regularity estimates for viscosity solutions to a class of possible degenerate and singular integro-differential equations whose leading operator switches between two different types of fractional elliptic phases, according to the zero set of a modulating coefficient a=a(⋅,⋅). The model case is driven by the following nonlocal double phase operator, ∫[Formula presented]dy+∫a(x,y)[Formula presented]dy, where q≥p and a(⋅,⋅)≧0. Our results do also apply for inhomogeneous equations, for very general classes of measurable kernels. By simply assuming the boundedness of the modulating coefficient, we are able to prove that the solutions are Hölder continuous, whereas similar sharp results for the classical local case do require a to be Hölder continuous. To our knowledge, this is the first (regularity) result for nonlocal double phase problems.
Hölder regularity for nonlocal double phase equations / De Filippis, Cristiana; Palatucci, Giampiero. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 267:1(2019), pp. 547-586. [10.1016/j.jde.2019.01.017]
Hölder regularity for nonlocal double phase equations
De Filippis, Cristiana;Palatucci, Giampiero
2019-01-01
Abstract
We prove some regularity estimates for viscosity solutions to a class of possible degenerate and singular integro-differential equations whose leading operator switches between two different types of fractional elliptic phases, according to the zero set of a modulating coefficient a=a(⋅,⋅). The model case is driven by the following nonlocal double phase operator, ∫[Formula presented]dy+∫a(x,y)[Formula presented]dy, where q≥p and a(⋅,⋅)≧0. Our results do also apply for inhomogeneous equations, for very general classes of measurable kernels. By simply assuming the boundedness of the modulating coefficient, we are able to prove that the solutions are Hölder continuous, whereas similar sharp results for the classical local case do require a to be Hölder continuous. To our knowledge, this is the first (regularity) result for nonlocal double phase problems.File | Dimensione | Formato | |
---|---|---|---|
DFP-Revised.pdf
accesso aperto
Descrizione: De Filippis - Palatucci, JDE 2019
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
586.04 kB
Formato
Adobe PDF
|
586.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.