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HÖLDER REGULARITY
FOR NONLOCAL DOUBLE PHASE EQUATIONS

CRISTIANA DE FILIPPIS AND GIAMPIERO PALATUCCI

Abstract. We prove some regularity estimates for viscosity solutions to a class
of possible degenerate and singular integro-differential equations whose leading op-
erator switches between two different types of fractional elliptic phases, according
to the zero set of a modulating coefficient a = a(·, ·). The model case is driven by
the following nonlocal double phase operator,∫
|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp dy +

∫
a(x, y)

|u(x)− u(y)|q−2(u(x)− u(y))

|x− y|n+tq dy,

where q ≥ p and a(·, ·) = 0. Our results do also apply for inhomogeneous equations,
for very general classes of measurable kernels. By simply assuming the boundedness
of the modulating coefficient, we are able to prove that the solutions are Hölder
continuous, whereas similar sharp results for the classical local case do require a to
be Hölder continuous. To our knowledge, this is the first (regularity) result for
nonlocal double phase problems.
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2 CRISTIANA DE FILIPPIS AND GIAMPIERO PALATUCCI

1. Nonlocal double phase problems

We deal with nonlocal double phase equations ; that is, a class of, possible singular
and degenerate, integro-differential equations whose leading operator switches between
two different fractional elliptic phases according to the zero set of the modulating
coefficient a = a(·, ·). These equations are indeed driven by the following nonlocal
double phase operator,

L(u):=P. V.

∫
Rn
|u(x)− u(y)|p−2(u(x)− u(y))Ksp(x, y) dy(1.1)

+ P. V.

∫
Rn
a(x, y)|u(x)− u(y)|q−2(u(x)− u(y))Ktq(x, y) dy, x ∈ Rn,

where the involved kernels Ksp,Ktq : Rn ×Rn → (0,∞) are measurable functions of
differentiability orders s, t ∈ (0, 1) and summability exponents p, q ∈ (1,∞), respec-
tively. Here P. V. stands for the principal value. We immediately refer to Section 2
for the precise assumptions on the involved quantities in the general framework we
are considering. In order to simplify, one can just keep in mind the model case when
the kernels Ksp and Ktq do coincide with the Gagliardo kernels |x − y|−n−sp and
|x − y|−n−tq, respectively; i. e., the case when the corresponding operator L does
reduce to a sum of a pure p-fractional Laplacian (−∆)sp and an integro-differential
operator whose (t, q)-kernel is perturbated by the modulating coefficient a(·, ·).

Such a case can be plainly seen as the nonlocal analog of the classical double phase
problems, whose chief model is related to by the following energy functional,

(1.2) F(u) :=

∫ (
|Du|p + a(x)|Du|q

)
dx, 1 < p ≤ q,

naturally defined for Sobolev functions. The functional F originally arose in Ho-
mogenization Theory and it is related to the so-called Lavrentiev phenomenon; see
for instance [37, 38]. From a regularity point of view, even without the presence
of the modulating coefficient a(·), such functional presents very interesting features,
falling in the class of the non-uniformly elliptic ones having (p, q)-growth conditions.
Thus, it cannot be treated via the standard available regularity methods; we refer
the reader to the pioneering work by Marcellini [27–30], where the fundamentals of
the (p, q)-regularity theory have been settled. One of the main points in the impor-
tant (p, q)-theory is the lack of regularity results for more general functionals whose
integrand depends on x possibly in a non-smooth way. In this respect, in view of
the presence of the modulating coefficient, the functional F in (1.2) is conceivably
the prototype of the worst kind of interplay between the coefficient in x and the
(p, q)-growth, since it clearly brings a change of ellipticity/growth occurring on the
set {a = 0}. Let us consider the significant case when q > p: in the points where
a > 0 the functional F reduces to a non-standard (p, q)-growth functional, which
exhibits a q-growth in the gradient. On the contrary, in the points where a = 0 the
functional exhibits a p-growth in the gradient. This is the main feature of this class
of functionals and it is basically the reason why they have been firstly introduced
by Zhikov in the aforementioned papers in order to describe the behavior of strongly
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anisotropic materials whose hardening properties drastically change with the point.
Such an important phase-transition problem is thus described by the functional F ,
where the regulation of the mixture between two different materials, with p and q

hardening, is modulated by the coefficient a(·), which simultaneously brought new
difficulties in the corresponding regularity theory. Indeed, even basic regularity issues
for these double phase problems have remained unsolved for several decades. The first
result in this spirit was recently due to Colombo and Mingione in [11], where, amongst
other achievements, they proved Hölder continuity for the weak solutions by assuming
that the modulating coefficient a(·) is Hölder continuous as well. This important result
is also proven to be sharp both with respect to the Hölder continuity assumption on
the modulating coefficient and with respect to the result obtained. See in particular
Theorem 1.1 in [11], and also Remarks 1-3 in forthcoming Section 2 and Section 5.2
for a discussion about the restriction on the involved quantities.

Starting from the work of Colombo and Mingione, despite its relatively short history,
double phase problems have already evolved into an elaborate theory with several
connections to other branches; the literature is too wide to attempt any comprehensive
treatment in a single paper. We refer, for instance, to [2, 3, 7, 12–14, 25, 34] and the
references therein.

Let us come back to the equations we are dealing with. In the present paper, we
consider the nonlocal version of the double phase problems described above. More in
general, we also consider inhomogeneous equations with a given datum f ∈ L∞loc. Our
main result reads as follows:

Suppose that the modulating coefficient a(·, ·) is such that 0 5 a ≤M,(1.3)

then any bounded viscosity solution u to Lu = f is locally Hölder continuous.(1.4)

For the precise assumptions and statement, we refer to forthcoming Section 2, and in
particular to Theorem 1 there.

Now, a few observations are in order:
• First of all, in contrast with respect to the local case, we are able to prove that

(viscosity) solutions to the fractional analog of double phase equations are Hölder
continuous by simply assuming the boundedness of the modulating coefficients a(·, ·).
In the corresponding local case, the C1,β-regularity result by Colombo and Mingione
is crucially related to the absence of the Lavrentiev phenomenon. This is achieved
provided that the ratio q/p is suitably bounded, i.e.: 1 ≤ q/p ≤ 1 + α/p, where the
α ∈ (0, 1] is the Hölder exponent of a(·); see [12, Proposition 3.6] and also the re-
lated preliminary result for what concerns the analysis of the Lavrentiev effect in [18].
Analogously, the much weaker assumption a ∈ L∞ in (1.3) may be interpreted as an
ineffectiveness of the Lavrentiev phenomenon in the nonlocal framework, and a conse-
quent assumption on the differentiability exponents (s, t) and summability ones (p, q)

will appear in accordance with the local results.
• Second, the equation in (1.4) inherits both the difficulties newly arising from

the double phase problems and those naturally arising from the nonlocal character
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of the involved fractional integro-differential operators. More than this, it is worth
noticing that the fractional operators L in (1.1) present as well the typical issues
given by their nonlinear growth behavior, and further efforts are needed due to the
presence of merely measurable coefficients in the kernels Ksp,Ktq. For this, some
very important tools recently introduced in the nonlocal theory, as the celebrated
Caffarelli-Silvestre s-harmonic extension [8], and other minor successful tricks, as for
instance the pseudo-differential commutator compactness in [32] or the energy density
estimates in [10,19,33], seem not to be adaptable to the framework considered here.
• Third, to our knowledge, this is the very first regularity result for solutions to

nonlocal double phase equations. Even in the very special case when both the differ-
entiability orders and the summability exponents coincide; that is, when s = t and
p = q, no related results involving a modulating coefficient could be found in the
literature; however, it is worth mentioning the fine Hölder estimates in the relevant
paper [20], where the authors deal with a class of elliptic integro-differential opera-
tors with kernels satisfying lower bounds on conic subsets, thus strongly directionally
dependent.

For what concerns our approach to attack the problem, we extend that in the by-
now classical work by Silvestre in [36], where the author provides a surprisingly clean
and purely analytical proof of Hölder continuity for harmonic functions with respect
to a class of integro-differential equations like the fractional Laplace with coefficients.
The approach developed by Silvestre also includes the case of variable orders, and it
has been proven to be very feasible to attack several problems in the recent nonlocal
theory, even in the case of the p-fractional Laplace equation, as seen in the recent
paper by Lindgren [26]. Clearly, the mentioned approach cannot be plainly applied
to the operator in (1.4) because our class of operators lives in the nonstandard (p, q)-
growth setting, and, even worst, we have to take care of the novelty given by the
presence of the modulating coefficient a(·, ·). In addition, it is worth mentioning that
such non-uniform ellipticity together with the interplay of the two differentiability
orders via the modulating coefficient a will preclude the natural scaling properties of
pure fractional Laplace operators. In this respect, the aforementioned proof of the
Hölder regularity for solutions to the p-fractional Laplace equation via the approach
by Silvestre is applicable with no substantial modifications to the inhomogeneous case
with a bounded datum f ; see Remark 4.3 in [36] and Lemma 1 in [26]. On the contrary,
the nonlocal double phase equations treated here will require further efforts. Precisely,
in order to carefully accomodate the presence of the datum f , we need to take into
account an appropriate analysis of the scaling effects on the double phase equations,
which will influence the involved kernels and the modulating coefficient as well. We
refer in particular to the detailed computations about such a nontrivial extension in
the forthcoming proofs of Proposition 2 and Lemma 1; see also the appendix. Finally,
the wide range of integrability we are considering here will force us to work in three
different ranges depending on the interaction between the exponents q ≥ p, which can
vary from singular to degenerate cases.
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Several questions naturally arise:
• Firstly, it is worth remarking that the result presented here does apply to bounded

solutions. It could be interesting to treat unbounded solutions, namely by truncation
and dealing with the resulting error term as a right hand-side, in the same flavour of
the papers [15,16], where the local boundedness for p-fractional minimizers is proven,
given that a precise quantity, the so-called “nonlocal tail”, can be controlled; see in
particular the local vs. nonlocal interpolation estimate in [16, Theorem 1.1]. Notice
that the approach in the aforementioned papers – as well as in the local counterpart
of the double phase operators [11,12] – is in the spirit of De Giorgi-Nash-Moser, being
addressed to energy minimizers/weak solutions, whereas the approach presented here
is more in the spirit of Krylov-Safonov.
• For this, a second natural question is whether or not, and under which assumptions

on the structural quantities, the viscosity solutions to nonlocal double phase equations
are indeed fractional harmonic functions and/or weak solutions, and vice versa. In
this respect, let us observe that one cannot plainly applied the results for p-fractional
minimizers as obtained in the recent paper [23] together with those in the forthcoming
paper [21], whose proofs seem to be feasible only for a restrict class of kernels which
cannot include a general modulating coefficient.
• Third, in the same spirit of the series of paper by Baroni, Colombo, and Min-

gione, one would expect higher differentiability and regularity results for the bounded
solutions to nonlocal double phase equations. We refer to [3] and in particular to
the paper [12], where it has been established the local gradient Hölder continuity of
minima provided a sharp balancing condition between the closeness of p and q and
the regularity of a(·) is satisfied. For what concerns the nonlocal case, it could be
useful to start from the estimates obtained in the present paper, together with those
in the very relevant results obtained for the fractional p-Laplace equation by Brasco,
Lindgren, and Schikorra [5, 6].
• Also, again in clear accordance with the local counterpart [12, Theorem 1.2], one

would expect self-improving properties of the solutions to (1.4). For this, one should
extend the recent nonlocal Gehring-type theorems proven in [24,35].
• Finally, both in the local and in the nonlocal double phase theory, nothing is

known about the regularity for solutions to parabolic double phase equations.

To summarize. The regularity result in the present paper seems to be the very
first one for nonlocal double phase equations; i. e., a wide class of equations led by
fractional operators exhibiting non-standard growth conditions and non-uniform ellip-
ticity properties, the latter according to the geometry of the level set of a modulating
coefficient a(·, ·). Precisely, we prove Hölder continuity for bounded viscosity solu-
tions, by extending to the fractional framework a recent sharp result by Colombo and
Mingione, with the substantial difference on the requirement of the modulating coef-
ficient a(·, ·), which is here assumed to belong only to L∞. We believe our estimates
to be important in a forthcoming nonlocal theory of double phase operators.
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2. Setting of the problem and description of the main result

In this section we set the problem we are dealing with, and we state our main result,
by adding further considerations about the involved quantities and assumptions.

Consider the following inhomogeneous nonlocal double phase equation,

(2.1) Lu = f,

where f is bounded and the integro-differential operator L is given by

Lu(x) := P. V.

∫
Rn
|u(x)− u(x+ y)|p−2(u(x)− u(x+ y))Ksp(x, y) dy

+ P. V.

∫
Rn
a(x, y)|u(x)− u(x+ y)|q−2(u(x)− u(x+ y))Ktq(x, y) dy.(2.2)

In the display above, the symbol P. V. stands for “principal value”; in the rest of the
paper, when not important, or clear from the context, we shall omit such a symbol.
The measurable kernels Ksp and Ktq essentially behave like (s, p) and (t, q)-kernels,
respectively; see [17, 31] for the basics on fractional Sobolev spaces. More precisely,
there exists a positive constant Λ such that
(2.3) Λ−1|y|−n−sp ≤ Ksp(x, y) ≤ Λ|y|−n−sp,

Ksp(x, y) = Ksp(x,−y),
and

 Λ−1|y|−n−tq ≤ Ktq(x, y) ≤ Λ|y|−n−tq,

Ktq(x, y) = Ktq(x,−y).

The differentiability orders s, t ∈ (0, 1) and the summability exponents p, q > 1 are
required such that

(2.4) p >
1

1− s
if p < 2, q >

1

1− t
,

and

(2.5) 1 ≤ q

p
≤ min

{
s

t
, 1 + s

}
;

for motivations about the two requirements above we refer to Remarks 1–3 below.
Finally, the modulating coefficient a = a(·, ·) is assumed to be measurable and such
that

(2.6) 0 ≤ a(x, y) ≤M for a. e. (x, y) ∈ Rn ×Rn.

In order to prove that viscosity solutions u could behave as classical solutions (see in
particular forthcoming Proposition 1), we will naturally require that the corresponding
nonlocal double phase energy of u is finite; i. e.,∫

Rn

∫
Rn

|u(x)− u(x+ y)|p

|y|n+sp
+ a(x, y)

|u(x)− u(x+ y)|q

|y|n+tq
dxdy <∞.(2.7)

Our main result is that bounded viscosity solutions to (2.1) with f bounded are
locally Hölder continuous, as stated in Theorem 1 below. For the natural definition
of viscosity solutions to nonlocal double phase equations, we refer to forthcoming
Section 3.
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Theorem 1. Let the nonlocal double phase operator L be defined in (2.2), under the
assumptions (2.3)–(2.7), and let f be in L∞(B2). If u is a bounded viscosity solution
to

Lu = f in B2,

then u ∈ C0,γ(B1) for some γ = γ(data) ∈ (0, 1).

In order to shorten the notation, in the statement above as well as in the rest of the
paper, we use the symbol data to express the natural dependency of the constants as
follows

data := n, p, q, s, t,M,Λ, ‖u‖L∞(Rn), ‖f‖L∞(B2).

Remark 1. As mentioned in the introduction, in the local case, the sharp C1,β-
regularity result by Colombo and Mingione is strictly related to the effect of the
Lavrentiev phenomenon, which can be avoided in the “a priori bounded” case by
assuming 1 ≤ q/p ≤ 1+α/p, α being the Hölder exponent of a(·). In clear accordance,
the range of validity of our result in (2.5) is precisely given by 1 ≤ q/p ≤ min{s/t, 1+

s}, being informally α = 0 here. Notice also that such a bound can be improved when
considering homogeneous equations; i. e., when f ≡ 0, as follows, 1 ≤ q/p ≤ s/t. As
we will see in the following, this is strictly related to the scaling properties of the
nonlocal double phase equations.

Remark 2. Condition (2.4)2 is due to the presence of the modulating coefficient
a(·, ·) which, in view of (2.6), is only bounded. In fact, concerning the integrability
exponent p, we notice that the assumption in (2.4)1 applies only when p < 2, while, if
no extra regularity is given on a(·, ·), the assumption in (2.4)2 becomes necessary in
order to deal with the q-part of the involved energy functional. On the other hand, if
a belongs to C0,α(Rn) for some α ∈ (0, 1], condition (2.4)2 can be improved as follows

q >
1− α
1− t

if q ≥ 2,

q >
1

1− t
if q < 2;

see Lemma 6 in the appendix. This is consistent with the more complex structure
of nonlocal double phase equations with respect to that of pure p/p(x)-fractional
equations.

Remark 3. It is worth noticing that the estimates obtained in the present paper are
not uniform with respect to the differentiability exponents s and t as they approach 1.
This is consistent with the result in the local case. Otherwise, Theorem 1 would have
implied a very general Hölder continuity result for solutions to the local double phase
problem without requiring the Hölder continuity of the modulating coefficient a(·, ·),
in contrast with the sharpness of the results in [11, 12]. For Hölder estimates and
some higher regularity result for related (s, p)-Laplace equations when s approach 1,
we refer to [4].
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3. Viscosity solutions to nonlocal double phase problems

Let us provide the natural definition of nonlocal viscosity solutions to (4.2), by also
showing their connection with the classical solutions. We have the following

Definition 1. Let Ω ⊂ Rn be an open subset and L be as in (4.1), under assump-
tions (2.3)-(2.6). An upper semicontinuous function u ∈ L∞loc(Ω) is a subsolution of
L(·) = C in Ω, and we write

“u is such that L(u) ≤ C in Ω in the viscosity sense„

if the following statement holds: whenever x0 ∈ Ω and ϕ ∈ C2(B%(x0)) for some % > 0

are so that

ϕ(x0) = u(x0), ϕ(x) ≥ u(x) for all x ∈ B%(x0) b Ω,

then we have Lϕ%(x0) ≤ C, where

ϕ% :=

{
ϕ in B%(x0)

u in Rn \B%(x0).

A viscosity supersolution is defined in an analogous fashion, and a viscosity solution
is a function which is both a subsolution and a supersolution.

As customary, in the definition above, we denoted by Bρ = Bρ(x0) the ball of
radius ρ centered in x0. We will keep this notation throughout the rest of the paper.
In the proposition below, we show that as soon as we can touch a viscosity subsolution
to (4.2) with a C2-function, then it behaves as a classical subsolution. The proof will
extend to the double phase problems a by-now classical approach, as firstly seen in [9]
for fully nonlinear integro-differential operators.

Proposition 1. Under assumptions (2.3)-(2.7), suppose that Lu ≤ C in B1 in the
viscosity sense. If ϕ ∈ C2(B%(x0)) is such that

ϕ(x0) = u(x0), ϕ(x) ≥ u(x) in B%(x0) b B1,

for some 0 < % < 1, then Lu is defined in the pointwise sense at x0 and Lu(x0) ≤ C.

Proof. For 0 < %′ ≤ %, set

ϕ%′ :=

{
ϕ in B%′(x0)

u in Rn \B%′(x0).

Since u is a viscosity subsolution in the sense of Definition 1, then

Lϕ%′(x0) ≤ C.(3.1)

The proof will now follows that of the analogous result for the p-Laplace equation
in [26], which extends to the nonlinear case the original proof by Caffarelli and Silvestre
in [9, Lemma 3.3]. Clearly, we have to take into account the competition between
the nonlocal kernels modulated by the coefficient a(·, ·), and this will require some
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modifications. Firstly, by introducing a similar terminology to the one adopted in [26],
we define the following quantities

δp(ϕ%′ , x, y) :=
1

2
|ϕ%′(x)− ϕ%′(x+ y)|p−2(ϕ%′(x)− ϕ%′(x+ y))

+
1

2
|ϕ%′(x)− ϕ%′(x− y)|p−2(ϕ%′(x)− ϕ%′(x− y)),

δq(ϕ%′ , x, y) :=
1

2
|ϕ%′(x)− ϕ%′(x+ y)|q−2(ϕ%′(x)− ϕ%′(x+ y))a(x, y)

+
1

2
|ϕ%′(x)− ϕ%′(x− y)|q−2(ϕ%′(x)− ϕ%′(x− y))a(x,−y),

and we consider the corresponding positive and negative part defined as follows,

δ±p (ϕ%′ , x, y) := max
{
± δp(ϕ%′ , x, y), 0

}
,

δ±q (ϕ%′ , x, y) := max
{
± δq(ϕ%′ , x, y), 0

}
.

Since ϕ ∈ C2(B%(x0)), by keeping in mind the structural assumptions on the ker-
nels, from (3.1) we can deduce that

C ≥ Lϕ%′(x0)

=

∫
Rn\B%′ (0)

|ϕ%′(x0)− ϕ%′(x0 + y)|p−2(ϕ%′(x0)− ϕ%′(x0 + y))Ksp(x0, y)dy

+

∫
Rn\B%′ (0)

a(x0, y)|ϕ%′(x0)− ϕ%′(x0 + y)|q−2(ϕ%′(x0)− ϕ%′(x0 + y))Ktq(x0, y) dy

+ lim
ε→0+

∫
B%′ (0)\Bε(0)

|ϕ%′(x0)− ϕ%′(x0 + y)|p−2(ϕ%′(x0)− ϕ%′(x0 + y))Ksp(x0, y) dy

+ lim
ε→0+

∫
B%′ (0)\Bε(0)

a(x0, y)|ϕ%′(x0)− ϕ%′(x0 + y)|q−2(ϕ%′(x0)− ϕ%′(x0 + y))Ktq(x0, y) dy

=

∫
Rn\B%′ (0)

(
δp(ϕ%′ , x0, y)Ksp(x0, y) + δq(ϕ%′ , x0, y)Ktq(x0, y)

)
dy

+ lim
ε→0+

∫
B%′ (0)\Bε(0)

1

2
|ϕ(x0)− ϕ(x0 + y)|p−2(ϕ(x0)− ϕ(x0 + y))Ksp(x0, y) dy

+ lim
ε→0+

∫
B%′ (0)\Bε(0)

1

2
|ϕ(x0)− ϕ(x0 − y)|p−2(ϕ(x0)− ϕ(x0 − y))Ksp(x0,−y) dy

+ lim
ε→0+

∫
B%′ (0)\Bε(0)

a(x0, y)

2
|ϕ(x0)− ϕ(x0 + y)|q−2(ϕ(x0)− ϕ(x0 + y))Ktq(x0, y) dy

+ lim
ε→0+

∫
B%′ (0)\Bε(0)

a(x0,−y)

2
|ϕ(x0)− ϕ(x0 − y)|q−2(ϕ(x0)− ϕ(x0 − y))Ktq(x0,−y) dy
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=

∫
Rn\B%′ (0)

(
δp(ϕ%′ , x0, y)Ksp(x0, y) + δq(ϕ%′ , x0, y)Ktq(x0, y)

)
dy

+

∫
B%′ (0)

(
δp(ϕ, x0, y)Ksp(x0, y) + δq(ϕ, x0, y)Ktq(x0, y)

)
dy

=

∫
Rn

(
δp(ϕ%′ , x0, y)Ksp(x0, y) + δq(ϕ%′ , x0, y)Ktq(x0, y)

)
dy,

(3.2)

where, we first operated the change of variable y 7→ −y, used (2.3) and then, by (2.4)
and the fact that ϕ%′ ≡ ϕ in B%′ , with ϕ ∈ C2(B%′(x0)), we noticed that the singular
integrals appearing in the previous display actually converge.

Moreover, given that for 0 < ς1 < ς2 < % one has ϕς2 ≥ ϕς1 ≥ u, we can recall the
very definition of the δ’s, (2.3) and (2.6), to get

δr(ϕς2 , x0, y) ≤ δr(ϕς1 , x0, y) ≤ δr(u, x0, y),(3.3)

with r = {p, q} and ς1 < ς2 < %. Therefore we deduce that

δ−p (u, x0, y) + δ−q (u, x0, y) ≤ δ−p (ϕς , x0, y) + δ−q (ϕς , x0, y)

≤ |δp(ϕ%, x0, y)|+ |δq(ϕ%, x0, y)|,(3.4)

for all 0 < ς < %. Using (2.4), the content of Lemma 6 in the appendix and the fact
that ϕ ∈ C2(B%(x0)), we have that

|δp(ϕ%, x0, ·)|Ksp(x0, ·) + |δq(ϕ%, x0, ·)|Ktq(x0, ·) ∈ L1(Rn),

and thus δ−p (u, x0, ·)Ksp(x0, ·) + δ−q (u, x0, ·)Ktq(x0, ·) is integrable. Furthermore, we
have∫

Rn

(
δ+
p (ϕ%′ , x0, y)Ksp(x0, y) + δ+

q (ϕ%′ , x0, y)Ktq(x0, y)
)

dy

=

∫
Rn

(
δ−p (ϕ%′ , x0, y)Ksp(x0, y) + δ−p (ϕ%′ , x0, y)Ksp(x0, y)

+δq(ϕ%′ , x0, y)Ktq(x0, y) + δ−q (ϕ%′ , x0, y)Ktq(x0, y)
)

dy

(3.2)

≤
∫
Rn

(
δ−p (ϕ%′ , x0, y)Ksp(x0, y) + δ−q (ϕ%′ , x0, y)Ktq(x0, y)

)
dy + C.(3.5)

Hence, for ς1 < ς2,∫
Rn

(
δ+
p (ϕς1 , x0, y)Ksp(x0, y) + δ+

q (ϕς1 , x0, y)Ktq(x0, y)
)

dy

(3.5)

≤
∫
Rn

(
δ−p (ϕς1 , x0, y)Ksp(x0, y) + δ−q (ϕς1 , x0, y)Ktq(x0, y)

)
dy + C

(3.3)

≤
∫
Rn

(
δ−p (ϕς2 , x0, y)Ksp(x0, y) + δ−q (ϕς2 , x0, y)Ktq(x0, y)

)
dy + C < ∞.(3.6)
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Since

δ+
p (ϕ%′ , x0, y) + δ+

q (ϕ%′ , x0, y)→ δ+
p (u, x0, y) + δ+

q (u, x0, y) as %′ → 0+,(3.7)

and δ+
r (ϕ%′ , x0, y) = δr(ϕ%′ , x0, y) + δ−r (ϕ%′ , x0, y), from (3.3), (3.4), (3.7), the mono-

tone convergence theorem and the dominated one, we have∫
Rn

(
δ+
p (ϕ%′ , x0, y)Ksp(x0, y) + δ+

q (ϕ%′ , x0, y)Ktq(x0, y)
)

dy

↓∫
Rn

(
δ+
p (u, x0, y)Ksp(x0, y) + δ+

q (u, x0, y)Ktq(x0, y)
)

dy,

as %′ goes to 0+. Now, using in (3.6) the fact that ς 7→ δ−r (ϕς , x0, y) is non decreasing,
we obtain∫

Rn

(
δ+
p (u, x0, y)Ksp(x0, y) + δ+

q (u, x0, y)Ktq(x0, y)
)

dy

≤
∫
Rn

(
δ−p (ϕ%′ , x0, y)Ksp(x0, y) + δ−q (ϕ%′ , x0, y)Ktq(x0, y)

)
dy + C < ∞,(3.8)

for all 0 < %′ < %. This allows us to conclude that δ+
p (u, x0, ·)Ksp(·)+δ+

q (u, x0, ·)Ktq(·)
is integrable. So that, by (3.4) and the monotone convergence theorem, we can pass
to the limit as %′ → 0+ in the right-hand side of (3.8). We get∫

Rn

(
δ+
p (u, x0, y)Ksp(x0, y) + δ+

q (u, x0, y)Ktq(x0, y)
)

dy

≤
∫
Rn

(
δ−p (u, x0, y)Ksp(x0, y) + δ−q (u, x0, y)Ktq(x0, y)

)
dy + C,

which means ∫
Rn
δp(u, x0, y)Ksp(x0, y) + δq(u, x0, y)Ktq(x0, y) dy ≤ C.

Finally, by applying −y 7→ y in the display above, we end up with∫
Rn
|u(x0)− u(x0 + y)|p−2(u(x0)− u(x0 + y))Ksp(x0, y) dy

+

∫
Rn
a(x0, y)|u(x0)− u(x0 + y)|q−2(u(x0)− u(x0 + y))Ktq(x0, y) dy ≤ C;

i. e., Lu(x0) exists in the pointwise sense and Lu(x0) ≤ C, as desired. �

4. Fundamental regularity estimates

In this section we set the background for the proof of Theorem 1, whose core
is a refinement result for inhomogeneous nonlocal double phase equations given in
forthcoming Lemma 1 which goes back to the pioneering work by De Giorgi. We refer
the reader to the important paper [36] for first results in this direction for fractional
operators, which – as mentioned in the introduction – will be the starting point of our
main proof.
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Let us denote by β any radial map which is C2-regular, vanishes outside B1, and it
is non-increasing along rays from the origin. The precise expression of such function β
is not relevant; for the sake of simplicity, one can just keep in mind the following choice
(with a slight abuse of notation),

β(x) = β(|x|) :=
(

(1− |x|2)+
)2
.

We now need to introduce a slightly modified version of the original operator
in (2.2). Precisely, for a positive, absolute constant ĉ we shall consider

L̂u(x) := P. V.

∫
Rn
|u(x)− u(x+ y)|p−2(u(x)− u(x+ y))Ksp(x, y) dy

+ P. V.

∫
Rn
ĉa(x, y)|u(x)− u(x+ y)|q−2(u(x)− u(x+ y))Ktq(x, y) dy,(4.1)

with the corresponding problem

L̂u(x) := f̂ in B2,(4.2)

for f̂ ∈ L∞(B2). Clearly, being the dilation constant ĉ strictly positive, all the
assumptions (2.3)–(2.7) are satisfied, with the solely difference that the upper bound
M appearing in (2.6) must be replaced by M̂ := ĉM . Thus, in particular, the results
in the previous section can be plainly applied to this family of nonlocal double phase
operators.

We are ready to state and prove some precise inequalities. The statement in the
proposition below could appear somewhat cumbersome, and this is so, as a natural
consequence of the difficult non-uniformly growth of the involved operators as well as of
their non-standard scaling and dilation properties (see also the appendix on Page 29).
However, in order to achieve the proof of the fundamental result in Lemma 1, as well
as for further developments in the nonlocal theory for the double phase equations, we
need to keep these estimates as precise as follows.

Proposition 2. Assume p, q, s, t, a, Ksp, Ktq are as described in (2.3)–(2.6) and
ĉ > 0 is an absolute constant. Then, for any ε > 0 there are 1/2 ≥ κ > 0 and η > 0

such that, if q ≥ p ≥ 2 and q > 1/(1− t), there holds

2q−2κp−1

∫
x+y∈B1

|β(x)− β(x+ y)|p−2(β(x)− β(x+ y))Ksp(x, y) dy

+ 2q−2κq−1

∫
x+y∈B1

ĉa(x, y)|β(x)− β(x+ y)|q−1Ktq(x, y) dy

+ 2q−2

∫
x+y 6∈B1

|κβ(x)− κβ(x+ y) + 2(|2(x+ y)|η − 1)|p−1Ksp(x, y) dy

+ 2q−2

∫
x+y 6∈B1

ĉa(x, y)
∣∣∣κβ(x)− κβ(x+ y) + 2

(
|2(x+ y)|η − 1

)∣∣∣q−1
Ktq(x, y) dy

+ (2 + ĉM)2q−1

∫
y 6∈B1/4

(
(|8y|η − 1)p−1Ksp(x, y) + (|8y|η − 1)q−1Ktq(x, y)

)
dy ≤ ε

Λ2n+sp+q
,

(4.3)



HÖLDER REGULARITY FOR NONLOCAL DOUBLE PHASE EQUATIONS 13

for all x ∈ B3/4. If q ≥ 2, q > 1/(1− t) and q ≥ 2 ≥ p > 1/(1− s), we have

(6q−1 + 22q−3)κp−1

∫
x+y∈B1

|β(x)− β(x+ y)|p−1Ksp(x, y) dy

+ 2q−2κq−1

∫
x+y∈B1

ĉa(x, y)|β(x)− β(x+ y)|q−1Ktq(x, y) dy

+ (6q−1 + 22q−3)

∫
x+y 6∈B1

|κβ(x)− κβ(x+ y) + 2(|2(x+ y)|η − 1)|p−1Ksp(x, y) dy

+ 2q−2

∫
x+y 6∈B1

ĉa(x, y)
∣∣∣κβ(x)− κβ(x+ y) + 2

(
|2(x+ y)|η − 1

)∣∣∣q−1
Ktq(x, y) dy

+ 2q−1(2q−2 + ĉM)

∫
y 6∈B1/4

(
(|8y|η − 1)p−1Ksp(y) + a(x, y)(|8y|η − 1)q−1Ktq(x, y)

)
dy

≤ ε

Λ2n+sp+q
,

(4.4)

for any x ∈ B3/4. Finally, if 2 > q > 1/(1− t) and 2 > p > 1/(1− s),

(3q−1 + 2q−1)κp−1

∫
x+y∈B1

|β(x)− β(x+ y)|p−1Ksp(x, y) dy

+ (3q−1 + 2q−1)κq−1

∫
x+y∈B1

ĉa(x, y)|β(x)− β(x+ y)|q−1Ktq(x, y) dy

+ (3q−1 + 2q−1)

∫
x+y 6∈B1

∣∣∣κβ(x)− κβ(x+ y) + 2
(
|2(x+ y)|η − 1

)∣∣∣p−1
Ksp(x, y) dy

+ (3q−1 + 2q−1)

∫
x+y 6∈B1

ĉa(x, y)
∣∣∣κβ(x)− κβ(x+ y) + 2

(
|2(x+ y)|η − 1

)∣∣∣q−1
Ktq(x, y) dy

+ 2q−1(1 + ĉM)

∫
y 6∈B1/4

(
(|8y|η − 1)p−1Ksp(y) + ĉa(x, y)(|8y|η − 1)q−1Ktq(x, y)

)
dy

≤ ε

Λ2n+sp+q
,

(4.5)

again for all x ∈ B3/4. Here κ and η depend on Λ, p, q, s, t, ε, M and ĉ.

Proof. For the ease of notation, let us define

Ip := 2q−2κp−1

∫
x+y∈B1

|β(x)− β(x+ y)|p−2(β(x)− β(x+ y))Ksp(x, y) dy,

Iq := 2q−2κq−1

∫
x+y∈B1

ĉa(x, y)|β(x)− β(x+ y)|q−1Ktq(x, y) dy,

IIp := 2q−2

∫
x+y 6∈B1

|κβ(x)− κβ(x+ y) + 2(|2(x+ y)|η − 1)|p−1Ksp(x, y) dy,

IIq := 2q−2

∫
x+y 6∈B1

ĉa(x, y)
∣∣∣κβ(x)− κβ(x+ y) + 2

(
|2(x+ y)|η − 1

)∣∣∣q−1
Ktq(x, y) dy,

III := (2 + ĉM)2q−1

∫
y 6∈B1/4

(
(|8y|η − 1)p−1Ksp(x, y) + (|8y|η − 1)q−1Ktq(x, y)

)
dy.

Case 1: q ≥ p ≥ 2 and q > 1
1−t . The symmetry of the domain of integration and (2.3)
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allow rewriting term Ip as

Ip =2q−3κp−1

∫
x+y∈B1

|β(x)− β(x+ y)|p−2(β(x)− β(x+ y))Ksp(x, y) dy

+ 2q−3κp−1

∫
x+y∈B1

|β(x)− β(x− y)|p−2(β(x)− β(x− y))Ksp(x, y) dy.(4.6)

Since β ∈ C2(B1), we easily see that

‖Dβ‖L∞ ≤ 8 and ‖D2β‖L∞ ≤ 16,(4.7)

and, as in the proof of Lemma 6, we set

A := −(β(x)− β(x− y)),

B := (β(x)− β(x− y)) + (β(x)− β(x+ y)).

In these terms we can manipulate (4.6) and, from Lemma 2, (2.3), (2.4)1 and (4.7)2
we get

Ip ≤2q−3κp−1

∫
x+y∈B1

(
|A+B|p−2(A+B)− |A|p−2A

)
Ksp(x, y) dy

≤(p− 1)2q−3κp−1

∫
x+y∈B1

|B|(|A|+ |B|)p−2 dy

≤cκp−1

∫
x+y∈B1

|y|p−n−sp dy ≤ c(n, p, q, s,Λ)κp−1 →κ→0+ 0.(4.8)

Further, using this time (2.3), (2.4)2, (2.6) and (4.7)1 we estimate

|Iq| ≤ cκq−1

∫
x+y∈B1

|y|q−1−n−tq dy ≤ c(n, q, t,Λ,M, ĉ)κq−1 →κ→0+ 0.(4.9)

From estimates (4.8) and (4.9), we immediately obtain that Ip + Iq →κ→0+ 0.

Concerning the second couple of terms, we notice that, since conditions x ∈ B3/4

and x + y 6∈ B1 imply y 6∈ B1/4 and therefore |x| ≤ 3|y|, in view of (2.3) and the
dominated convergence theorem, we can estimate as follows,

IIp ≤ cκp−1

∫
y 6∈B1/4

|y|−n−sp dy + c

∫
y 6∈B1/4

(|8y|η − 1)p−1|y|−n−sp dy

≤ cκp−1 + c

∫
y 6∈B1/4

(|8y|η − 1)p−1|y|−n−sp dy −→ 0(4.10)

as κ→ 0+ and η → 0+ (notice also that the latter assures in particular η < sp/(p− 1),
so that |y|η(p−1)−n−sp is integrable over Rn \ B1/4). Here c = c(n, p, q, s,Λ). Analo-
gously, we can estimate as above the following term,

IIq ≤ cκq−1

∫
y 6∈B1/4

|y|n−tq dy + c

∫
y 6∈B1/4

(|8y|η − 1)q−1|y|−n−tq dy

≤ cκq−1 + c

∫
y 6∈B1/4

(|8y|η − 1)q−1|y|−n−tq dy −→ 0,(4.11)
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as κ→ 0+ and η → 0+ (specifically, η < tq/(q − 1)), for a non relabeled constant c =

c(n, p, q, t,M,Λ, ĉ). Estimates (4.10)-(4.11) guarantee that IIp + IIq → 0 as κ, η →
0+. Finally, remembering that η is supposed to go to zero, we can assume η <

min
{

sp
p−1 ,

tq
q−1

}
, thus it is easy to see that, by the dominated convergence theorem,

(4.12) III →η→0+ 0.

Let us have a look to the term on the right-hand side of (4.3). By (2.3) and (2.6), for
any A0 ⊂ B2 we have∫

A0

(
Ksp(x, y) + ĉa(x, y)Ktq(x, y)

)
dy ≥

∫
A0

Λ−1|y|−n−sp dy ≥ |A0|
Λ2n+sp

,

which yields

(4.13) 21−q inf
A0⊂B2,|A0|>ε

∫
A0

(
Ksp(x, y) + ĉa(x, y)Ktq(x, y)

)
dy ≥ ε

Λ2n+sp+q−1
,

so we can choose η1, κ1 sufficiently small in such a way that the sum Ip + Iq + IIp +

IIq + III can be controlled by the quantity in the right-hand side of (4.13), e. g., the
number in (4.3).

Case 2: q ≥ 2 ≥ p > 1/(1− s) and q > 1
1−t . We only need to take care of the term in

the first line of (4.4), since the other terms can be estimated as in the previous case:
the fact that those are multiplied by a different constant will not affect the result. Let

IV := (6q−1 + 22q−3)κp−1

∫
x,y∈B1

|β(x)− β(x+ y)|p−1Ksp(x, y) dy,

We have, by Lagrange’s Theorem, (4.7)1, (2.4)1 and (2.3), that

IV ≤ cκp−1

∫
B7/4

|y|p−1−n−sp dy −→κ→0+ 0,

with c = c(n, p, q,Λ, s). Again, we can fix η2 and κ2 small enough so that (4.4) is
satisfied.

Case 3: 2 ≥ q > 1/(1− t) and 2 ≥ p > 1/(1 − s). In this case we will only consider
the term in the second line of (4.5),

V := (3q−1 + 2q−1)κq−1

∫
x+y∈B1

ĉa(x, y)|β(x)− β(x+ y)|q−1Ktq(x, y) dy.

By Lagrange’s Theorem, (4.7)1, (2.6), (2.4)2 and (2.3) we obtain

V ≤ c

∫
B7/4

|y|q−1−n−tq dy −→κ→0+ 0,

where c = c(n, q,M,Λ, t, ĉ). Hence, we can find η3 and κ3 for which (4.5) holds true,
and this concludes the proof. �
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Remark 4. From now on, we will work with parameters η := min
i={1,2,3}

ηi > 0 and

κ := min
i∈{1,2,3}

κi > 0, where the ηi’s, κi’s are those determined in Proposition 2. This

choice is clearly motivated by the fact that these definitions assure that (4.3)–(4.5)
are simultaneously matched.

Lemma 1. Under assumptions (2.3)–(2.7), let η be as the one determined in Re-
mark 4, and set

σ := 2q−1

∫
y 6∈B1/4

(
(|8y|η − 1)p−1|y|−n−sp + (|8y|η − 1)q−1|y|−n−tq

)
dy.(4.14)

If u is such that |B1 ∩ {x : u(x) ≤ 0}| > ε and

(4.15)


L̂u ≤ σ in B1,

u ≤ 1 in B1,

u(x) ≤ 2|2x|η − 1 in Rn \B1,

then there exists θ = θ(n, p, q, s, t,M,Λ, ĉ) > 0 such that

u ≤ 1− θ in B1/2.

Proof. Let κ be as in Remark 4 and set θ := κ(β(1/2)− β(3/4)) = 95κ/256. By con-
tradiction, suppose that there is x0 ∈ B1/2 such that u(x0) > 1 − θ. Then u(x0) +

κβ(1/2) > 1 + κβ(3/4). Moreover, since β is non increasing along rays, for any
y ∈ B1 \B3/4 there holds

u(x0) + κβ(x0) > u(x0) + κβ(1/2) > 1 + κβ(3/4) ≥ u(y) + κβ(y).

This shows that the maximum of u + κβ in B1 is attained in B3/4 and it is strictly
larger than one. Let x̄ ∈ B3/4 be such a maximum point. We aim to estimate L(u+

κβ)(x̄) from above and below as to reach a contradiction with (4.3)–(4.5). Notice
that −κβ + (u + κβ)(x̄) touches u from above at x̄, thus, being β ∈ C2

c (B1), by
Proposition 1,

L̂u(x̄) ≤ σ in the pointwise sense.(4.16)

We begin by estimating L̂(u+ κβ)(x̄) from below. We then rewrite

L(u+ κβ)(x̄) = lim
%→0+

I% + I2,

where

I% :=

∫
x̄+y∈B1,y 6∈B%

(
|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|p−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ksp(x̄, y)
)

dy

+

∫
x̄+y∈B1,y 6∈B%

(
ĉa(x̄, y)|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|q−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ktq(x̄, y)
)

dy,
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I2 :=

∫
x̄+y 6∈B1

(
|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|p−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ksp(x̄, y)
)

dy

+

∫
x̄+y 6∈B1

(
ĉa(x̄, y)|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|q−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ktq(x̄, y)
)

dy.

Set A0 :=
{
x̄ + y ∈ B1 : u(x̄ + y) ≤ 0

}
; by using that u(x̄) + κβ(x̄) > 1 is the

maximum of u+κβ in B1, we see that the integrand in I% is nonnegative and we have
the following estimate

I% ≥
∫
A0∩Bc%

(
(1−κβ(x̄+ y))p−1Ksp(x̄, y) + ĉa(x̄, y)(1−κβ(x̄+ y))q−1Ktq(x̄, y)

)
dy,

Since β ≤ 1 and κ ≤ 1/2, recalling also that ĉ > 0 and, by (2.6), a(·, ·) is nonnegative,
we can deduce

lim inf
%→0

I% ≥ 21−q inf
A⊂B2,|A|>ε

∫
A

(
Ksp(x̄, y) + ĉa(x̄, y)Ktq(x̄, y)

)
dy

≥ 21−q inf
A⊂B2,|A|>ε

∫
A
Ksp(x̄, y) dy ≥ ε

Λ2n+sp+q−1
.

Let us take care of I2. Exploiting that u(x̄) + κβ(x̄) > 1, (4.15)3 and that β ≡ 0

in Rn \B1, we have

I2 ≥
∫
x̄+y 6∈B1

2p−1
∣∣∣1− |2(x̄+ y)|η

∣∣∣p−2(
1− |2(x̄+ y)|η

)
Ksp(x̄, y) dy

+

∫
x̄+y 6∈B1

2q−1ĉa(x̄, y)
∣∣∣1− |2(x̄+ y)|η

∣∣∣q−2(
1− |2(x̄+ y)|η

)
Ktq(x̄, y) dy

≥
∫
y 6∈B1/4

2p−1

∣∣∣∣∣∣ 1−

∣∣∣∣∣ 2

(
3

4
+ |y|

) ∣∣∣∣∣
η
∣∣∣∣∣∣
p−21−

∣∣∣∣∣ 2

(
3

4
+ |y|

) ∣∣∣∣∣
η
Ksp(x̄, y) dy

+

∫
y 6∈B1/4

2q−1ĉa(x̄, y)

∣∣∣∣∣∣ 1−

∣∣∣∣∣ 2

(
3

4
+ |y|

) ∣∣∣∣∣
η
∣∣∣∣∣∣
q−21−

∣∣∣∣∣ 2

(
3

4
+ |y|

) ∣∣∣∣∣
η
Ktq(x̄, y) dy

≥ −2q−1

∫
y 6∈B1/4

(
(|8y|η − 1)p−1Ksp(x̄, y) + ĉa(x̄, y)(|8y|η − 1)q−1Ktq(x̄, y)

)
dy.

Adding together the content of the two displays above, we obtain

L(u+ κβ)(x̄) ≥ ε

Λ2n+sp+q−1

− 2q−1

∫
y 6∈B1/4

(
(|8y|η − 1)p−1Ksp(x̄, y) + ĉa(x̄, y)(|8y|η − 1)q−1Ktq(x̄, y)

)
dy.(4.17)

Now, we want to estimate L(u + κβ)(x̄) from above, and for this we need to dis-
tinguish the following three cases: q ≥ p ≥ 2, q ≥ 2 ≥ p, and 2 ≥ q ≥ p.
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Case 1: q ≥ p ≥ 2 and q > 1/(1− t). We split the integral into two parts:

L(u+ κβ)(x̄) = I1 + I2,

where

I1 :=

∫
x̄+y∈B1

(
|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|p−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ksp(x̄, y)
)

dy

+

∫
x̄+y∈B1

(
ĉa(x̄, y)|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|q−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ktq(x̄, y)
)

dy,

I2 :=

∫
x̄+y 6∈B1

(
|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|p−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ksp(x̄, y)
)

dy

+

∫
x̄+y 6∈B1

(
ĉa(x̄, y)|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|q−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ktq(x̄, y)
)

dy,

We start from I1 by noticing that when x̄+ y ∈ B1,

u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y) ≥ 0,(4.18)

given that u+ κβ attains its maximum in B1 in x̄. So we can apply Lemma 3 to get∣∣u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)
∣∣r−2

(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))

≤ 2q−2
(
|u(x̄)− u(x̄+ y)|r−2(u(x̄)− u(x̄+ y)) + |κβ(x̄)− κβ(x̄+ y)|r−2

×(κβ(x̄)− κβ(x̄+ y))
)
,

for r ∈ {p, q}. Hence, recalling also (2.6) and the fact that ĉ > 0,

I1 ≤ 2q−2

∫
x̄+y∈B1

|u(x̄)− u(x̄+ y)|p−2(u(x̄)− u(x̄+ y))Ksp(x̄, y) dy

+ 2q−2κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−2(β(x̄)− β(x̄+ y))Ksp(x̄, y) dy

+ 2q−2

∫
x̄+y∈B1

ĉa(x̄, y)|u(x̄)− u(x̄+ y)|q−2(u(x̄)− u(x̄+ y))Ktq(x̄, y) dy

+ 2q−2κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy.

Now let us consider I2. Here it is not possible to apply directly Lemma 3, but from
the assumptions we still have

u(x̄) + κβ(x̄) > 1 and u(x̄+ y) + κβ(x̄+ y) ≤ 2|2(x̄+ y)|η − 1,
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which means that

u(x̄)− u(x̄+ y) + κβ(x̄)− κβ(x̄+ y) > 2(1− |2(x̄+ y)|η).

Adding 2(|2(x̄ + y)|η − 1) > 0 to both sides of the preceding inequality we increase
the integrand and we make it nonnegative:

u(x̄)− u(x̄+ y) + κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1) ≥ 0(4.19)

so, again, we can use Lemma 3. We obtain

I2 ≤
∫
x̄+y 6∈B1

(
|u(x̄)− u(x̄+ y) + κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|p−2

×(u(x̄)− u(x̄+ y) + κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1))Ksp(x̄, y)
)

dy

+

∫
x̄+y 6∈B1

(
ĉa(x̄, y)|u(x̄)− u(x̄+ y) + κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|q−2

×
(
u(x̄)− u(x̄+ y) + κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)

)
Ktq(x̄, y)

)
dy

≤ 2q−2

∫
x̄+y 6∈B1

|u(x̄)− u(x̄+ y)|p−2(u(x̄)− u(x̄− y))Ksp(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)|u(x̄)− u(x̄+ y)|q−2(u(x̄)− u(x̄+ y))Ktq(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

(
|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|p−2

×(κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1))Ksp(x̄, y)
)

dy

+ 2q−2

∫
x̄+y 6∈B1

(
ĉa(x̄, y)|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|q−2

×(κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1))Ktq(x̄, y)
)

dy.

Adding the estimates for terms I1 and I2 and recalling (4.16), we end up with

L(u+ κβ)(x̄)

≤ Lu(x̄) + 2q−2κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−2(β(x̄)− β(x̄+ y))Ksp(x̄, y) dy

+ 2q−2κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−2(β(x̄)− β(x̄+ y))Ktq(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|p−2

×(κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1))Ksp(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|q−2

× (κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1))Ktq(x̄, y) dy
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≤ σ + 2q−2κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−1Ksp(x̄, y) dy

+ 2q−2κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

∣∣∣κβ(x̄)− κβ(x̄+ y) + 2
(
|2(x̄+ y)|η − 1

)∣∣∣p−1
Ksp(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)
∣∣∣κβ(x̄)− κβ(x̄+ y) + 2

(
|2(x̄+ y)|η − 1

)∣∣∣q−1
Ktq(x̄, y) dy,

(4.20)

where we also used (4.15)1. Coupling (4.17) and (4.20), together with the definition
of σ, and also recalling (4.12), we conclude that

ε

Λ2n+sp+q−1
≤ (2 + ĉM)2q−1

∫
y 6∈B1/4

(
(|8y|η − 1)p−1Ksp(x̄, y) + (|8y|η − 1)q−1Ktq(x̄, y)

)
dy

+ 2q−2κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−2(β(x)− β(x+ y))Ksp(x̄, y) dy

+ 2q−2κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

∣∣∣κβ(x̄)− κβ(x̄+ y) + 2
(
|2(x̄+ y)|η − 1

)∣∣∣p−1
Ksp(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)
∣∣∣κβ(x̄)− κβ(x̄+ y) + 2

(
|2(x̄+ y)|η − 1

)∣∣∣q−1
Ktq(x̄, y) dy

(4.3)

≤ ε

Λ2n+sp+q
,

which is clearly a contradiction.

Case 2: q ≥ 2 ≥ p > 1/(1− s) and q > 1/(1− t). We look again at terms I1, I2

and we split them as

I1 = Ip1 + Iq1 and I2 = Ip2 + Iq2 ,

where

Ip1 :=

∫
x̄+y∈B1

|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|p−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ksp(x̄, y) dy,

Iq1 :=

∫
x̄+y∈B1

ĉa(x̄, y)|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|q−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ktq(x̄, y) dy,

Ip2 :=

∫
x̄+y 6∈B1

|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|p−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ksp(x̄, y) dy,



HÖLDER REGULARITY FOR NONLOCAL DOUBLE PHASE EQUATIONS 21

Iq2 :=

∫
x̄+y 6∈B1

ĉa(x̄, y)|u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)|q−2

(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y))Ktq(x̄, y) dy.

Being q ≥ 2, the estimates for terms Iq1 , I
q
2 are the same as those in the previous case,

therefore we have

Iq1 ≤ 2q−2

∫
x̄+y∈B1

ĉa(x̄, y)|u(x̄)− u(x̄+ y)|q−2(u(x̄)− u(x̄+ y))Ktq(x̄, y) dy

+ 2q−2κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy(4.21)

and

Iq2 ≤ 2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)|u(x̄)− u(x̄+ y)|q−2(u(x̄)− u(x̄+ y))Ktq(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|q−2

×
(
κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)

)
Ktq(x̄, y) dy.(4.22)

Since p ≤ 2 and q ≥ 2, we can use (4.18), (4.19) and Lemma 4 to get∣∣∣u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)
∣∣∣p−2(

u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)
)

≤ 2q−2|u(x̄)− u(x̄+ y)|p−2(u(x̄)− u(x̄+ y))

+ (6q−1 + 22q−3)κp−1|β(x̄)− β(x̄+ y)|p−1

and ∣∣∣u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y) + 2
(
|2(x̄+ y)|η − 1

)∣∣∣p−2

×
(
u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y) + 2

(
|2(x̄+ y)|η − 1

))
≤ 2q−2|u(x̄)− u(x̄+ y)|p−2(u(x̄)− u(x̄+ y))(4.23)

+ (6q−1 + 22q−3)
∣∣∣κβ(x̄)− κβ(x̄+ y) + 2

(
|2(x̄+ y)|η − 1

)∣∣∣p−1
.

Finally, we can conclude that

I1

(4.21),(4.19)
≤ 2q−2

∫
x̄+y∈B1

|u(x̄)− u(x̄+ y)|p−2(u(x̄)− u(x̄+ y))Ksp(x̄, y) dy

+ 2q−2

∫
x̄+y∈B1

ĉa(x̄, y)|u(x̄)− u(x̄+ y)|q−2(u(x̄)− u(x̄+ y))Ktq(x̄, y) dy

+ (6q−1 + 22q−3)κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−1Ksp(x̄, y) dy

+ 2q−2κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−2(β(x̄)− β(x̄+ y))Ktq(x̄, y) dy

(4.24)



22 CRISTIANA DE FILIPPIS AND GIAMPIERO PALATUCCI

and

I2

(4.22),(4.23)
≤ 2q−2

∫
x̄+y 6∈B1

|u(x̄)− u(x̄+ y)|p−2(u(x̄)− u(x̄+ y))Ksp(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)|u(x̄)− u(x̄+ y)|q−2(u(x̄)− u(x̄+ y))Ktq(x̄, y) dy

+ (6q−1 + 22q−3)

∫
x̄+y 6∈B1

∣∣∣κβ(x̄)− κβ(x̄+ y) + 2
(
|2(x̄+ y)|η − 1

)∣∣∣p−1
Ksp(x̄, y) dy

+2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)
∣∣∣κβ(x̄)− κβ(x̄+ y) + 2

(
|2(x̄+ y)|η − 1

)∣∣∣q−2

×
(
κβ(x̄)− κβ(x̄+ y) + 2

(
|2(x̄+ y)|η − 1

))
Ktq(x̄, y) dy,(4.25)

so that

L(u+ κβ)(x̄)

(4.24),(4.25)
≤ 2q−2Lu(x̄) + (6q−1 + 22q−3)κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−1Ksp(x̄, y) dy

+ 2q−2κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−2(β(x̄)− β(x̄+ y))Ktq(x̄, y) dy

+ (6q−1 + 22q−3)

∫
x̄+y 6∈B1

∣∣∣κβ(x̄)− κβ(x̄+ y) + 2
(
|2(x̄+ y)|η − 1

)∣∣∣p−1
Ksp(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

(
ĉa(x̄, y)

∣∣∣κβ(x̄)− κβ(x̄+ y) + 2
(
|2(x̄+ y)|η − 1

)∣∣∣q−2

×
(
κβ(x̄)− κβ(x̄+ y) + 2

(
|2(x̄+ y)|η − 1

))
Ktq(x̄, y)

)
dy

(4.16)
≤ 2q−2σ + (6q−1 + 22q−3)κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−1Ksp(x̄, y) dy

+ 2q−2κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy

+ (6q−1 + 22q−3)

∫
x̄+y 6∈B1

∣∣∣κβ(x̄)− κβ(x̄+ y) + 2
(
|2(x̄+ y)|η − 1

)∣∣∣p−1
Ksp(x̄, y) dy

(4.26)
+ 2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)
∣∣∣κβ(x̄)− κβ(x̄+ y) + 2

(
|2(x̄+ y)|η − 1

)∣∣∣q−1
Ktq(x̄, y) dy.
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Recalling the definition of σ and combining (4.26), (4.17), (4.4), we obtain

ε

Λ2n+sp+q−1
≤ 2q−1(2q−2 + ĉM)

∫
y 6∈B1/4

(|8y|η − 1)p−1Ksp(x̄, y) + (|8y|η − 1)q−1Ktq(x̄, y) dy

+ (6q−1 + 22q−3)κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−1Ksp(x̄, y) dy

+ 2q−2κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy

+ (6q−1 + 22q−3)

∫
x̄+y 6∈B1

|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|p−1Ksp(x̄, y) dy

+ 2q−2

∫
x̄+y 6∈B1

ĉa(x̄, y)|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|q−1Ktq(x̄, y) dy

≤ ε

Λ2n+sp+q
,

which again is a contradiction.

Case 3: 2 ≥ q > 1/(1− t) and 2 ≥ p > 1/(1− s). In this case, we first use Lemma 4
to get, for r = {p, q},

∣∣u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)
∣∣r−2

(
u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y)

)
≤ |u(x̄)− u(x̄+ y)|r−2(u(x̄)− u(x̄+ y)) + (3q−1 + 2q−1)κr−1|β(x̄)− β(x̄+ y)|r−1

and so,

∣∣u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y) + 2(|2(x+ y)|η − 1)
∣∣r−2

×(u(x̄) + κβ(x̄)− u(x̄+ y)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1))

≤ |u(x̄)− u(x̄+ y)|r−2(u(x̄)− u(x̄+ y))

+ (3q−1 + 2q−1)|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|r−1.

Thus, by combining the two estimates above, we get

I1 ≤
∫
x̄+y∈B1

|u(x̄)− u(x̄+ y)|p−2(u(x̄)− u(x̄+ y))Ksp(x̄, y) dy

+

∫
x̄+y∈B1

ĉa(x̄, y)|u(x̄)− u(x̄+ y)|q−2(u(x̄)− u(x̄+ y))Ktq(x̄, y) dy

+ (3q−1 + 2q−1)κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−1Ksp(x̄, y) dy

+ (3q−1 + 2q−1)κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy(4.27)
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and

I2 ≤
∫
x̄+y 6∈B1

|u(x̄)− u(x̄+ y)|p−2(u(x̄)− u(x̄+ y))Ksp(x̄, y) dy

+

∫
x̄+y 6∈B1

ĉa(x̄, y)|u(x̄)− u(x̄+ y)|q−2(u(x̄)− u(x̄+ y))Ktq(x̄, y) dy

+ (3q−1 + 2q−1)

∫
x̄+y 6∈B1

|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|p−1Ksp(x̄, y) dy

+ (3q−1 + 2q−1)

∫
x̄+y 6∈B1

ĉa(x̄, y)|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|q−1Ktq(x̄, y) dy,

(4.28)

therefore

L(u+ κβ)(x̄)

(4.27),(4.28)
≤ Lu(x̄) + (3q−1 + 2q−1)κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−1Ksp(x̄, y) dy

+ (3q−1 + 2q−1)κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy

+ (3q−1 + 2q−1)

∫
x̄+y 6∈B1

|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|p−1Ksp(x̄, y) dy

+ (3q−1 + 2q−1)

∫
x̄+y 6∈B1

ĉa(x̄, y)|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|q−1Ktq(x̄, y) dy

(4.16)

≤ σ + (3q−1 + 2q−1)κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−1Ksp(x̄, y) dy

+ (3q−1 + 2q−1)κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy

+ (3q−1 + 2q−1)

∫
x̄+y 6∈B1

|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|p−1Ksp(x̄, y) dy

+ (3q−1 + 2q−1)

∫
x̄+y 6∈B1

ĉa(x̄, y)
∣∣∣κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)

∣∣∣q−1
Ktq(x̄, y) dy.
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Merging the content of the above display with (4.17) and using (4.5), we reach the
following contradiction:

ε

Λ2n+sp+q−1
≤ 2q−1(1 + ĉM)

∫
y 6∈B1/4

(|8y|η − 1)p−1Ksp(x̄, y) + (|8y|η − 1)q−1Ktq(x̄, y) dy

+ (3q−1 + 2q−1)κp−1

∫
x̄+y∈B1

|β(x̄)− β(x̄+ y)|p−1Ksp(x̄, y) dy

+ (3q−1 + 2q−1)κq−1

∫
x̄+y∈B1

ĉa(x̄, y)|β(x̄)− β(x̄+ y)|q−1Ktq(x̄, y) dy

+ (3q−1 + 2q−1)

∫
x̄+y 6∈B1

|κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)|p−1Ksp(x̄, y) dy

+ (3q−1 + 2q−1)

∫
x̄+y 6∈B1

ĉa(x̄, y)
∣∣∣κβ(x̄)− κβ(x̄+ y) + 2(|2(x̄+ y)|η − 1)

∣∣∣q−1

×Ktq(x̄, y) dy

≤ ε

Λ2n+sp+q
.

�

5. Hölder continuity

This section is devoted to the proof of the Hölder continuity of the solutions, namely
Theorem 1. As in the local framework, at this stage, an iteration lemma will be
the keypoint of the proof. However, as before, we have to handle the nonlocality
of the involved operators together with the modulating function a(·, ·), and thus a
certain care is required. Also, the scaling behavior of the nonlocal double phase
equations has to be taking into account, precisely when dealing with the datum f

in order to apply the result in Lemma 1. Here, as expected, the assumptions on
the summability exponents (2.4)-(2.5) will be in force, in clear accordance with the
observation in Remark 1; for further clarification in this respect we refer to forthcoming
Sections 5.2-5.3. On the whole, in the proof below, all the estimates proven in the
previous section will take part.

5.1. Proof of Theorem 1. Let u be a solution of problem (2.1), with L as in (2.2),
under assumptions (2.3)–(2.7). For a small parameter σ chosen as in (4.14), we first
rescale u by defining the map ũ := λu, where

(5.1) λ :=
1

2

(
1

‖u‖L∞ + (‖f‖L∞(B2)/σ)1/(p−1)

)
.

From (5.1), it is easy to see that

osc
Rn

u ≤ 1

and, according to the scaling properties of L discussed in the Appendix at Page 29,
the function ũ satisfies

L̃ũ = f̃ in B2,
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where L̃ is an operator of the type of those considered in (4.1), precisely

L̃v(x) :=

∫
Rn
|v(x)− v(x+ y)|p−2(v(x)− v(x+ y))Ksp(x, y) dy

+

∫
Rn
λp−qa(x, y)|v(x)− v(x+ y)|q−2(v(x)− v(x+ y))Ktq(x, y) dy

and

f̃(x) := λp−1f(x),

for x ∈ B2. Again, the definition in (5.1) assures that

‖f̃‖L∞(B2) ≤
σ

2p−1
.

Now, fix x0 ∈ B1. For i ∈ Z, by induction, we are going to find bi, ci so that

bi ≤ ũ(x) ≤ ci in B2−i(x0) and |ci − bi| ≤ 2−iγ ,(5.2)

where γ ∈ (0, 1) satisfies
2− θ

2
≤ 2−γ and γ ≤ η < min

{
sp

p− 1
,
tq

q − 1

}
.(5.3)

The values of θ = θ(data) and η = η(data) are those coming from Proposition 2 and
Lemma 1 corresponding to ε = |B1|/2. Clearly, (5.2) is satisfied for i ≤ 0 by the
choice bi := infx∈Rn u(x) and ci := bi+ 1. Let us assume that (5.2) holds for i ≤ j, by
induction we will construct bj+1 and cj+1. Consider the function ū defined as follows:

ū(x) := 2γj+1
(
ũ(2−jx+ x0)−m

)
, for x ∈ B1,

where m := (bj + cj)/2. By (5.2) and (5.1), it is evident that ‖ū‖L∞(B1) ≤ 1 and,
invoking again the behavior of the operator L under blow up, we obtain that ū solves

L̄ū = f̄ in B1,

where

L̄v(x) :=

∫
Rn
|v(x)− v(x+ y)|p−2(v(x)− v(x+ y))K̄sp(x, y) dy

+

∫
Rn
ā(x, y)|v(x)− v(x+ y)|q−2(v(x)− v(x+ y))K̄tq(x, y) dy(5.4)

and

f̄(x) := λp−12(γj+1)(p−1)−jspf(2−jx+ x0).

From (5.1) and (5.3)2 it follows that

‖f̄‖L∞(B1) ≤ σ.(5.5)

Notice also that in (5.4), the kernels K̄sp(·, ·) and K̄tq(·, ·) are given by{
K̄sp(x, y) := 2−j(n+sp)Ksp(2

−jx+ x0, 2
−jy)

K̄tq(x, y) := 2−j(n+tq)Ktq(2
−jx+ x0, 2

−jy)
,(5.6)

so that (2.3) is satisfied. Moreover, the new modulating coefficient is given by

ā(x, y) := λp−q2−j(sp−tq)+(γj+1)(p−q)a(2−jx+ x0, 2
−jy).(5.7)



HÖLDER REGULARITY FOR NONLOCAL DOUBLE PHASE EQUATIONS 27

As to verify (2.6) for ā(·, ·), we need to analyze the behavior of λ, which is ultimately
influenced only by σ. Therefore, using (4.14) we obtain that

σ− :=
ωn2q−1+2sp(2η − 1)

sp
≤ σ

≤ ωn2q+3η(q−1) max

{
4sp−η(p−1)

sp− η(p− 1)
,
4tq − η(q − 1)

tq − η(q − 1)

}
=: σ+,(5.8)

where η is by now fixed. Coupling (5.7), (2.6), (5.1), (2.5), (5.8), and recalling that
σ << 1, we can conclude that

‖ā‖L∞(B1) ≤ 2q−pM

‖u‖L∞(Rn) +

(
‖f‖L∞(B2)

σ

) 1
p−1


q−p

≤ c(σ−)
p−q
p−1 =: M(data),(5.9)

for a constant c depending only on p, q,M, ‖u‖L∞(Rn), ‖f‖L∞(B2), so that (2.6) is
satisfied as well.

Finally, we notice that, given any y ∈ Rn \ B1, there is an integer ` ≥ 0 such that
2` ≤ |y| ≤ 2`+1, so we have

ū(y) = 2γj+1
(
ũ(2−jy + x0)−m

)
≤ 2γj+1

(
cj−`−1 −m

)
≤ 2γj+1

(
cj−`−1 + bj − bj−`−1 −m

)
≤ 2γj+1

(
2−γ(j−`−1) + bj −m

)
≤ 2γj+1

(
2−γ(j−`−1) − 2−(γj+1)

)
≤ 21+γ(`+1) − 1 ≤ 2|2y|γ − 1 ≤ 2|2y|η − 1,

where we also used that the inductive step (5.2) holds for i ≤ j and (5.3)2. It is not
restrictive now to suppose that |{x ∈ B1 : ū(x) ≤ 0}| ≥ |B1|/2, (otherwise we can
apply the same procedure to −ū); collecting estimates (5.5), (5.6) and (5.9) we see
that L̄, ū and f̄ satisfy all the assumptions of Lemma 1 corresponding to ε = |B1|/2.
As a consequence, ū(x) ≤ 1− θ in B1/2, for some θ = θ(data). Scaling back to ũ, this
renders

ũ(x) ≤ 2−(γj+1)(1− θ) +m = 2−(γj+1)(1− θ) +
bj + cj

2

≤ bj + 2−(1+γj)(1− θ) + 2−(1+γj)

≤ bj + 2−γ(j+1),

where we used the definition of m, (5.2)2 and (5.3)1. Hence, the choices bj+1 = bj
and cj+1 = bj + 2−γ(j+1) fix (5.2) for step i = j + 1. Now, for any % ∈ (0, 1) we can
find an integer j ≥ 0 so that 2−j−1 ≤ % ≤ 2−j and

osc
B%(x0)

ũ = sup
x∈B%(x0)

ũ(x)− inf
x∈B%(x0)

ũ(x)

≤ bj−1 + 2−γj − bj−1 ≤ 2γ2−γ(j+1) ≤ 2γ%γ .
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Scaling back to u in the previous estimate and recalling (5.1) and (5.8), we have that

osc
B%(x0)

u ≤ %γ2γ+1

‖u‖L∞(Rn) +

(
‖f‖L∞(B2)

σ−

) 1
p−1


≤ c(data)

(
‖u‖L∞(Rn) + ‖f‖

1
p−1

L∞(B2)

)
%γ .

Here, of course, γ = γ(data). By standard covering, we can finally conclude that
u ∈ C0,γ(B1), as desired.

5.2. Further clarification. In the proof of Theorem 1, a crucial role is played by
the estimates in Proposition 2. However, in the light of the scaling features of the
operator L, it is evident that, while reducing σ by sending η → 0+ there is some
competition among the terms appearing in estimates (4.3)–(4.5). Adopting the same
terminology of Proposition 2, from (5.1) and (5.7), we see that

ĉ ≤ λ̃p−q and λp−q ∼ σ−
q−p
p−1 ,

where the constants implicit in “∼” depend only on p, q, ‖f‖L∞(B2), ‖u‖L∞(Rn). Thus,
recalling (4.3), we look at those terms depending on η and we can estimate

22p+q−6

∫
x+y 6∈B1

∣∣∣|2(x+ y)|η − 1
∣∣∣p−1

Ksp(x, y) dy

+(2 + ĉM)2q−1

∫
y 6∈B1/4

(
(|8y|η − 1)p−1Ksp(x, y) + (|8y|η − 1)q−1Ktq(x, y)

)
dy

≤
(

22p−4Λ + ĉM
)

2q−1

∫
y 6∈B1/4

(
(|8y|η − 1)p−1Ksp(x, y) + (|8y|η − 1)q−1Ktq(x, y)

)
dy

(5.10)

≤ cσ1− q−p
p−1 ,

since |x| is supposed to be less than 3/4 in the proofs of Proposition 2 and of Lemma 1.
Here, c = c(data). Condition (2.5) yields that the exponent of the term in the right-
hand side of (5.10) is strictly positive, so we can find a sufficiently small η1 > 0 so that
cσ

1− q−p
p−1 ≤ ε/(5Λ2n+sp+q+1). Fixed η1, we can complete the bound on those terms

appearing on the left-hand side of (4.3) as follows

2q−2κp−1
1

∫
x+y∈B1

|β(x)− β(x+ y)|p−1Ksp(x, y) dy

+ 2q−2κq−1
1

∫
x+y∈B1

ĉa(x, y)|β(x)− β(x+ y)|q−1Ktq(x, y) dy

+ 2p+q−4κp−1
1

∫
x+y 6∈B1

|β(x)− β(x, y)|p−1Ksp(x, y) dy

+ 22q−4κq−1
1

∫
x+y 6∈B1

ĉa(x, y)|β(x)− β(x+ y)|q−1Ktq(x, y) dy

≤ c

(
κp−1

1 + σ
− q−p
p−1κq−1

1

)
≤ ε

5Λ2n+sp+q+1
,(5.11)
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provided that κ1 ≤
(
σ
2c

) 1
p−1 , with c = c(data). Then, we can easily deduce inequal-

ity (4.3) by merging the contents of (5.10) and (5.11). In a totally similar way we can
manipulate the quantities appearing in (4.4) and in (4.5) as to verify those bounds
and, at the same time, avoid any competition among the parameters involved.

Now, we let η2,κ2 and η3,κ3 be those values of η and of κ for which (4.4) and (4.5)
hold respectively, and finally set η := min{η1, η2, η3} and κ := min{κ1, κ2, κ3}. In
this way, (4.3)–(4.5) are simultaneously satisfied. Notice that η = η(data, ε) and κ =

κ(data, ε).

Appendix

We complete this paper by discussing some intrinsic characteristics of the class of
operators under investigation.

5.3. Scaling properties of the nonlocal double phase equations. Let us analyze
the structure of operator L by investigating some general scaling properties. Under
assumption (2.7), let u ∈ L∞(Rn) be a viscosity solution to problem (2.1) in the sense
of Definition 1. We rescale and blow u around a point x0 ∈ B1 as follows. For λ, µ > 0

and x ∈ B1, we define the map u(λ)
µ,x0(x) := λu(µx+ x0). Such a function satisfies

L̂u(λ)
µ,x0(x) := f̂(x) in B1,

where

L̂v(x) :=

∫
Rn
|v(x)− v(x+ y)|p−2(v(x)− v(x+ y))K̂sp(x, y) dy

+

∫
Rn
â(x, y)|v(x)− v(x+ y)|q−2(v(x)− v(x+ y))K̂tq(x, y) dy(5.12)

and

f̂(x) := λp−1µspf(µx+ x0).(5.13)

The modulating coefficient and the kernels appearing in (5.12) are defined as

â(x, y) := λp−qµsp−tqa(µx+ x0, µy)(5.14)

and  K̂sp(x, y) := µn+spKsp(µx+ x0, µy)

K̂tq(x, y) := µn+tqKtq(µx+ x0, µy)
,(5.15)

respectively. From (5.15), it immediately follows that K̂sp and K̂tq satisfy (2.3).
Moreover, (5.14) yields (2.6) via replacing M with M̂ := λp−qµsp−tqM and, by (5.13)
it follows that ‖f̂‖L∞(B1) ≤ λp−1µsp−tq‖f‖L∞(B1).
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5.4. Some useful inequalities. We report some elementary algebraic inequalities
whose proofs are essentially contained in the Appendix in [26]; see in particular
Lemma 3 and Lemma 4 there. We refer also to Section 2 in [22] where similar in-
equalities do appear. All of them are very useful in estimating the p-fractional Sobolev
seminorms, and they were needed in the whole paper. For the sake of completeness,
here below we address the plain modifications in order to extend them to the fractional
(p, q)-growth case.

Lemma 2. Let r ≥ 2, r ∈ {p, q}. Then∣∣∣|a+ b|r−2(a+ b)− |a|r−2a
∣∣∣ ≤ (r − 1)|b|(|a|+ |b|)r−2,

for all a, b ∈ R.

Proof. The proof is contained in [26, Lemma 2]. �

Lemma 3. Let q ≥ p ≥ 2 and let a, b ∈ R such that a + b ≥ 0. Then, for r ∈ {p, q}
there holds

|a+ b|r−2(a+ b) ≤ 2q−2(|a|r−2a+ |b|r−2b).

Proof. Firstly, notice that, a+b ≥ 0 implies |a|r−2a+|b|r−2b ≥ 0 and, by homogeneity,
the statement is equivalent to |1 + τ |r−2(1 + τ) ≤ 2r−2(1 + |τ |r−2τ) with τ ≥ −1 and
r ∈ {p, q}. For this, it will suffice to study the asymptotics of the function τ 7→

fr(τ) :=
|1 + τ |r−2(1 + τ)

1 + |τ |r−2τ
for τ ≥ −1. It is easy to check that fr(τ) ≤ 2r−2 ≤ 2q−2,

and this will give the desired inequality. �

Lemma 4. Let either p ∈ (1, 2) or q ∈ (1, 2), q ≥ p. Then, for r ∈ {p, q} there holds∣∣∣|a+ b|r−2(a+ b)− |a|r−2a
∣∣∣ ≤ (3q−1 + 2q−1)|b|r−1.

Proof. One can basically follow the proof of Lemma 3 in [26], by observing that q ≥ p
plainly yields 3p−1 + 2p−1 < 3q−1 + 2q−1. �

Important consequences of Lemma 2 are the following results for C2-regular func-
tions.

Lemma 5. Let ϕ ∈ C2(Rn). If p ≥ 2. Then, there holds

|ϕ(x)− ϕ(x+ y)|p−2(ϕ(x)− ϕ(x+ y)) + |ϕ(x)− ϕ(x− y)|p−2(ϕ(x)− ϕ(x− y))

≤ c|y|p for all x, y ∈ Rn,
(5.16)

with c ≡ c(n, p, ‖ϕ‖C2).
Let 1 < p < 2. Then, there holds

|ϕ(x)− ϕ(x+ y)|p−2(ϕ(x)− ϕ(x+ y)) + |ϕ(x)− ϕ(x− y)|p−2(ϕ(x)− ϕ(x− y))

≤ c|y|p−1 for all x, y ∈ Rn,
(5.17)

for c = c(n, p, ‖ϕ‖C1).
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Moreover, if a(·, ·) satisfies (2.6), then for every q > 1 we have

a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+ a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))

≤ c|y|q−1,(5.18)

where c = c(n, q, ‖a‖L∞ , ‖ϕ‖C1).
If a belongs to C0,α(Rn ×Rn) for some α ∈ (0, 1] and q ≥ 2, then

a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+ a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))

≤ c(|y|q + |y|q−1+α),(5.19)

with c = c(n, q, ‖a‖L∞ , [a]C0,α , ‖ϕ‖C2).
Finally, if a(x, y) = a(x,−y) for all x, y ∈ Rn and q ≥ 2, then

a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+ a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))

≤ c|y|q,(5.20)

holds true for c = c(n, q, ‖a‖L∞ , ‖ϕ‖C2).

Proof. Set

A := −(ϕ(x)− ϕ(x+ y)),

B := (ϕ(x)− ϕ(x+ y)) + (ϕ(x)− ϕ(x+ y)).

In these terms, we can apply Lemma 2 to get

|ϕ(x)− ϕ(x+ y)|p−2(ϕ(x)− ϕ(x+ y)) + |ϕ(x)− ϕ(x− y)|p−2(ϕ(x)− ϕ(x− y))

= |A+B|p−2(A+B)− |A|p−2A

≤ (p− 1)|B|(|A|+ |B|)p−1

≤ c|y|p,

for all x, y ∈ Rn. Here c = c(n, p, ‖ϕ‖C2), which is (5.16). For (5.17), we only need
Lagrange’s Theorem to obtain

|ϕ(x)− ϕ(x+ y)|p−2(ϕ(x)− ϕ(x+ y)) + |ϕ(x)− ϕ(x− y)|p−2(ϕ(x)− ϕ(x− y))

≤ c|y|p−1,

with c = c(n, p, ‖ϕ‖C1). On the other hand, due to the presence of a(·, ·), which
is a priori only bounded, we cannot apply the same procedure to the q-part of our
operator, therefore, under (2.6) we can only invoke Lagrange’s Theorem again to get

a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+ a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))

≤ c|y|q−1 for all x, y ∈ Rn,
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with c = c(n, q, ‖a‖L∞ , ‖ϕ‖C1). Nonetheless, if we assume extra regularity for a(·, ·),
we can exploit again Lemma 2 to obtain

a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+ a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))

± a(x, y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))

≤ a(x, y)
(
|A+B|q−2(A+B)− |A|q−2B

)
+ 2[a]C0,α |y|α|ϕ(x)− ϕ(x− y)|q−1 ≤ c(|y|q + |y|q−1+α),

where c = c(n, q, ‖a‖L∞ , [a]C0,α , ‖ϕ‖C2). Notice that, when |y| ≤ 1, the last term
in (5.19) can be bounded by c|y|q−1+α.

Finally, we conclude the proof by stressing that the procedure employed to ob-
tain (5.16) can be repeated verbatim when q ≥ 2 provided that a(x, y) = a(x,−y) for
all x, y ∈ Rn. In such a case, a(·, ·) ≥ 0 does reduce to a multiplicative factor allowing
again the application of Lemma 2; we have

a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+ a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))

= a(x, y)
(
|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+ |ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))
)
≤ c|y|q,

with c = c(n, q, ‖a‖∞, ‖ϕ‖C2), which is (5.20). �

Lemma 6. Let B% ⊂ Rn be any ball centered in the origin with radius % ≤ 1 and
ϕ ∈ C2(Rn). Then, if p ≥ 2 we have∫

B%

∣∣∣|ϕ(x)− ϕ(x+ y)|p−2(ϕ(x)− ϕ(x+ y))

+|ϕ(x)− ϕ(x− y)|p−2(ϕ(x)− ϕ(x− y))
∣∣∣Ksp(x, y) dy ≤ c <∞,(5.21)

for c = c(n,Λ, p, ‖ϕ‖C2(Rn)). If 1/(1− s) < p < 2, there holds∫
B%

∣∣∣|ϕ(x)− ϕ(x+ y)|p−2(ϕ(x)− ϕ(x+ y))

+|ϕ(x)− ϕ(x− y)|p−2(ϕ(x)− ϕ(x− y))
∣∣∣Ksp(x, y) dy ≤ c <∞,(5.22)

with c = c(n,Λ, p, ‖ϕ‖C1(Rn)). Moreover, under assumption (2.6) we have∫
B%

∣∣∣a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))
∣∣∣Ktq(x, y) dy ≤ c <∞,(5.23)

for c = c(n,Λ, q, ‖a‖L∞ , ‖ϕ‖C1).
If a ∈ C0,α(Rn×Rn) for some α ∈ (0, 1] and q ≥ max

{
2, (1− α)(1− t)

}
, we have∫

B%

∣∣∣a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))
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+a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))
∣∣∣Ktq(x, y) dy ≤ c <∞,(5.24)

is satisfied. Here c = c(n,Λ, q, ‖a‖L∞ , [a]C0,α , ‖ϕ‖C2).
Finally, if a ∈ L∞(Rn ×Rn) symmetric in the sense that a(x, y) = a(x,−y) for all

x, y ∈ Rn × Rn, and q ≥ 2, then∫
B%

∣∣∣a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))
∣∣∣Ktq(x, y) dy ≤ c <∞(5.25)

holds true with c = c(n,Λ, q, ‖a‖∞, ‖ϕ‖C2).

Proof. Let B% ⊂ Rn be any ball centered in the origin with radius % ≤ 1. If p ≥ 2,
recalling (2.3) and (5.16),∫

B%

∣∣∣|ϕ(x)− ϕ(x+ y)|p−2(ϕ(x)− ϕ(x+ y))

+|ϕ(x)− ϕ(x− y)|p−2(ϕ(x)− ϕ(x− y))
∣∣∣Ksp(x, y) dy

≤ c
∫
B%

|y|p−n−sp dy < c <∞,

where c = c(n,Λ, p, ‖ϕ‖C2(Rn)). If p < 2, by (5.17) and (2.4)1 we have∫
B%

∣∣∣|ϕ(x)− ϕ(x+ y)|p−2(ϕ(x)− ϕ(x+ y))

+|ϕ(x)− ϕ(x− y)|p−2(ϕ(x)− ϕ(x− y))
∣∣∣Ksp(x, y) dy

≤ c
∫
B%

|y|p−1−n−sp dy < c <∞,

with c = c(n,Λ, p, ‖ϕ‖C1). Furthermore, if we assume (2.6), by (2.4)2, (2.3) and (5.18)
it follows that∫

B%

∣∣∣a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))
∣∣∣Ktq(x, y) dy

≤ c
∫
B%

|y|q−1−n−tq dy ≤ c,

for c = c(n,Λ, q, ‖a‖L∞ , ‖ϕ‖C1). Clearly, in this case it does not matter if q < 2 or
q ≥ 2.

Finally, if q ≥ 2 and in addition a belongs to C0,α(Rn ×Rn), from (5.19) we get∫
B%

∣∣∣a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))
∣∣∣Ktq(x, y) dy

≤ c
∫
B%

|y|q−1+α dy ≤ c,
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provided that also q > (1− α)(1− t). Here, c = c(n,Λ, q, ‖a‖L∞ , [a]C0,α , ‖ϕ‖C2).
Finally, concerning the estimate in (5.25), by recalling (5.20) and (2.3), we can

conclude that∫
B%

∣∣∣a(x, y)|ϕ(x)− ϕ(x+ y)|q−2(ϕ(x)− ϕ(x+ y))

+a(x,−y)|ϕ(x)− ϕ(x− y)|q−2(ϕ(x)− ϕ(x− y))
∣∣∣Ktq(x, y) dy

≤ c
∫
B%

|y|q dy ≤ c,

for c = c(n,Λ, q, ‖a‖∞, ‖ϕ‖C2). �
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