Trajectory scaling techniques are able to adapt online the robot motion to preserve the desired geometric path when the desired motion does not satisfy the robot limits. State-of-the-art local methods typically provide far-from-optimal solutions, while high computational burdens are the main bottleneck for the implementation of model predictive schemes. This paper proposes a predictive approach to trajectory scaling subject to kinematics and dynamics limitations. Computational complexity is reduced by linearizing nonlinear constraints around the previous output prediction. This allows the online implementation of the method even for small sampling periods. Numerical and experimental results show the effectiveness of the method.
Predictive Joint Trajectory Scaling for Manipulators with Kinodynamic Constraints / Faroni, Marco; Beschi, Manuel; GUARINO LO BIANCO, Corrado; Visioli, Antonio. - In: CONTROL ENGINEERING PRACTICE. - ISSN 0967-0661. - 95:February(2020). [10.1016/j.conengprac.2019.104264]
Predictive Joint Trajectory Scaling for Manipulators with Kinodynamic Constraints
Corrado Guarino Lo Bianco;Antonio Visioli
2020-01-01
Abstract
Trajectory scaling techniques are able to adapt online the robot motion to preserve the desired geometric path when the desired motion does not satisfy the robot limits. State-of-the-art local methods typically provide far-from-optimal solutions, while high computational burdens are the main bottleneck for the implementation of model predictive schemes. This paper proposes a predictive approach to trajectory scaling subject to kinematics and dynamics limitations. Computational complexity is reduced by linearizing nonlinear constraints around the previous output prediction. This allows the online implementation of the method even for small sampling periods. Numerical and experimental results show the effectiveness of the method.File | Dimensione | Formato | |
---|---|---|---|
predictive.pdf
solo utenti autorizzati
Tipologia:
Versione (PDF) editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
888.34 kB
Formato
Adobe PDF
|
888.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
predictive_pp.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
631.65 kB
Formato
Adobe PDF
|
631.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.