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Abstract

Trajectory scaling techniques adapt online the robot timing law to preserve the desired geometric path when the
desired motion does not respect the robot limits. State-of-the-art non-predictive methods typically provide far-from-
optimal solutions, while high computational burdens are the main bottleneck for the implementation of receding
horizon strategies. This paper proposes a predictive approach to trajectory scaling subject to joint velocity, acceler-
ation, and torque limitations. Computational complexity is dramatically reduced by means of the parametrization of
inputs and outputs and the iterative linearization of the optimal control problem around the previous output prediction.
This allows the online implementation of the method for sampling periods in the order of one millisecond. Numerical
and experimental results on a six-degree-of-freedom robot show the effectiveness of the method.

Keywords: Motion planning, robot manipulators, trajectory scaling, joint constraints, predictive control.

1. Introduction

Throughput maximization plays a key role in industrial
processes. Robot manipulators are often taken to the limit
and decrements of the tracking performance arise when
the required task is too demanding with respect to the5

robot physical capabilities. This may worsen the quality
of the process.

The design of the task is usually decomposed into two
stages. First, the geometric path is devised, accounting for
high-level requirements (e.g., task specifications, obstacle10

avoidance). Second, the timing law along such path is de-
fined as a suitable mono-dimensional function over time.
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Limitations of the robot kinematics and dynamics vari-
ables are usually considered in this second step. As a
general approach, such limits can be included in an op-15

timization problem, which outputs the optimized velocity
profile along the geometric curve [1, 2, 3, 4, 5]. Such
approach suffers from high computational burdens and
needs to know the whole trajectory a priori. Offline im-
plementation is therefore required, but this is a relevant20

limit in view of recent developments in the robotic field,
where the motion is often planned or modified online
(e.g., collaborative robotics and robots in unstructured en-
vironments).

A possible way to tackle this issue consists in adapt-25

ing the velocity profile of the robot online according to
the robot limits and changes in the environment. Diverse
methods have been presented in the literature under the
name of online trajectory scaling or path following con-
trol.30

Online trajectory scaling comes from a motion plan-
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ning context. It assumes the robot is equipped with a feed-
back controller and feeds it with an open-loop reference.
This approach is clearly oriented to robot manipulators,
which come with a robust (often closed-architecture) mo-35

tion controller. It is worth pointing out that, in this way,
stability issues do not arise, as the underlying controller
is robust and stable. Moreover, in trajectory scaling both
path and timing law are always specified, and the algo-
rithm adapts the motion by giving priority to the geomet-40

ric reference, but still trying to follow the given velocity
profile at best. The reason for having a fully-specified tra-
jectory comes from practical considerations. For exam-
ple, in additive manufacturing, the amount of deposited
material linearly depends on the robot speed. Thus, the45

nominal timing law is a technological requirement and it
should be modified as less as possible. Moreover, timing
of the robotic processes often comes from the scheduling
of the tasks and should be relaxed only to prevent quality
degradation of the process or due to safety issues.50

Path following control addresses the general problem
of moving a dynamic system along a reference geometric
curve using the velocity profile as an additional control
variable [6, 7, 8, 9, 10]. These methods are intended to be
implemented as feedback controllers. They therefore re-55

quire stability and robustness and the possibility of acting
directly on the low-level controller of the robot. How-
ever, nothing prevents one from using them to generate an
open-loop reference for the robot controller. Moreover,
path following control usually computes the velocity pro-60

file from scratch according to a given criterion (usually
the minimization of the execution time).

Both online trajectory scaling and path following meth-
ods are implemented with sampling periods in the order
of few milliseconds. To do so, they sacrifice optimality65

in favor of low computational complexity. Most scaling
methods in the literature uses a non-predictive approach:
the motion is modified without taking into account the
nominal trajectory and the presence of constraints at fu-
ture time instants; only the desired motion at the current70

time instant is considered. Examples of such approach
can be found in [11, 12, 13, 14, 15, 16, 17]. The draw-
back is that the solution is only locally optimal with re-
spect to the global execution of the task. As a matter of
fact, without taking into account the future evolution of75

the trajectory and the constraints, they cannot prevent the
system from disadvantageous situations, which could lead

to infeasibility and saturation of the actuators. This issue
can be mitigated, for example, by using a receding hori-
zon approach. In this respect, [18] proposed a predictive80

inverse kinematics resolution method for robotic mani-
pulators under position, velocity, and acceleration limits.
This method also considers task scaling in order to pre-
serve the nominal geometric task in case saturations can-
not be avoided. The method is implemented online with85

sampling periods in the order of one millisecond also on
highly redundant manipulators.

Receding horizon strategies have also been investigated
in path following control. In particular, [9] proposed a
Nonlinear MPC (NMPC) path-following approach where90

also the case of assigned velocity profile is addressed.
In [10], the method is implemented on a three-degree-
of-freedom manipulator. To reach real-time computing
speed, the nonlinear input function is parametrized as
a staircase function whose intervals are ten times larger95

than the sampling period, then the optimal control prob-
lem is solved by means of a single-shooting Sequen-
tial Quadratic Programming (SQP) solver with maximum
number of iterations equal to one. It is worth pointing
out that the computational time exponentially grows in the100

number of variables and analytical equations of the kine-
matics and dynamics of the robot and their derivatives is
not always viable for manipulators with many degrees of
freedom.

In this work, we propose a different approach that al-105

lows the real-time implementation also on complex ma-
nipulators. First of all, the method specifically addresses
the trajectory scaling problem (i.e., both path and veloc-
ity profile are specified and the method generates online a
reference for the robot controller). The proposed method110

is based upon the receding horizon approach described
in [18] and aims to include also torque boundaries in the
MPC framework. The method consider a virtual model
of the manipulator where the joint accelerations are the
control variables (i.e., each joint is modeled as a double115

integrator). In this way, the predictive equations of the
joint velocities and positions are linear in the control vari-
ables. The trajectory scaling property is expressed at ve-
locity level: the nominal joint velocity is multiplied by a
scalar variable; by setting it to a value smaller than one, it120

is possible to slow down the trajectory without modifying
the path. Torque limits are considered via the inverse dy-
namics equations of the manipulator. The resulting non-
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linear constraints are then linearized at each iteration by
using joint positions and velocities predicted at the previ-125

ous cycle, similarly to [8, 19, 20]. The use of a zero-order
linearization reduces the computational burden compared
to standard SQP solvers.

Although the method proposed up to this point reduces
the online optimization problem to a Quadratic Program130

(QP), robotic systems typically present very fast sampling
periods, and this represents the main limit to the applica-
tion of MPC in this field. As a matter of fact, long-enough
horizons imply a large number of optimization variables,
with consequent high computing times [21]. In order to135

speed up the algorithm, the computational complexity of
the QP needs to be reduced. Several complexity reduc-
tion techniques have been proposed in the literature. The
most common approach consists in the parametrization of
the input function, in order to reduce the number of vari-140

ables involved in the optimization [22, 23]. As already
mentioned, in [10] inputs are parametrized as step-wise
constant functions with discretization intervals larger than
the sampling period. However, from the perspective of
receding horizon control, a parametrization which gives145

more importance to the first part of the predictive hori-
zon might improve the overall results. An alternative ap-
proach was proposed in [19, 24], where inputs and outputs
were parametrized as continuous-time staircase functions
with non-constant intervals. In this way, a parametrization150

with shorter intervals at the beginning of the horizon and
larger intervals at the end can be chosen. Following this
idea, in this paper, a discrete-time approach is devised to
obtain a staircase parametrization of inputs and outputs.
Compared to [19, 24], the derivation and the implementa-155

tion are much simpler, for they only need the construc-
tion of two binary matrices, without modifying the classic
derivation of the predictive equations. Such matrices can
be easily computed offline by following the algorithmic
procedures presented in the paper.160

Summarizing, differently from other receding horizon
approaches (e.g., [10]), the proposed method uses a faster
linearization method (the zero-order linearization does
not require the computation of the gradients of constraints
and cost functions), and the choice of the joint accelera-165

tion as virtual input and the velocity-based cost function
reduce the complexity of the control problem. Moreover,
the use of the uneven distribution of the nodes along the
horizon improves the performance of the method, espe-

cially for longer horizons. These advantages are high-170

lighted by the numerical and experimental results pre-
sented in this work.

The paper is organized as follows. Section 2 defines
the trajectory scaling problem to be addressed. Section 3
illustrates the proposed method. Then, numerical results175

on a Universal Robot UR10 manipulator are discussed in
Section 4.1. In particular, the method is tested on dif-
ferent trajectories and the results are compared against a
state-of-the-art non-predictive method and [16, 17] and
the NMPC path-following method [10]. Moreover, dif-180

ferent implementations and the effect of different input
parametrizations are discussed. Section 4.2 shows experi-
mental results on a Universal Robot UR10 robot. Conclu-
sions are presented in Section 5. Finally, the complexity
reduction technique adopted for the implementation of the185

method is described in Appendix A.

2. Preliminaries

Consider a robot manipulator with n joints and denote
with q, q̇, q̈, and τ ∈ Rn its joint configuration, veloc-
ity, acceleration, and torque vectors, respectively. The dy-
namics of the robot is described by the model:

ẋ = f (x,u) (1)

where x := (q, q̇) ∈ R2n and u := τ . The robot is subject
to limitations of its states and commands. Typically, the
following constraints are considered:

q̇min ≤ q̇≤ q̇max (2)
q̈min ≤ q̈≤ q̈max (3)
τmin ≤ τ ≤ τmax (4)

where q̇min, q̈min, τmin ∈ Rn are the lower velocity, ac-
celeration, and torque limits of the joints, and q̇max, q̈max,
τmax ∈Rn are upper velocity, acceleration, and torque lim-190

its of the joints.
Consider now a desired curve qd in the joint space, such

that
qd : Σ⊆ R→ Rn , s 7→ qd := qd(s) (5)

where s parametrizes the curve. Curve qd represents the
geometrical path in the joint space, while the trend of vari-
able s over the time determines the timing law (i.e., the
velocity profile) along the path.195
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In path following control, s is used as an additional con-
trol variable to minimize a certain criterion (e.g., the total
time). However, when it comes to robot manipulators,
the timing law along the path is usually assigned due to
technological requirements. In particular, the trajectory
is completely defined by assigning a reference timing law
sref. It is common to allow a relaxation of the timing law
in case the desired motion is infeasible with respect to the
robot limits. This allows avoiding geometrical errors that
would arise due to saturation of the joint limits. The ap-
proach proposed in [9] addresses such problem by devis-
ing an NMPC strategy. Given the desired velocity profile
ṡref, the resulting Optimal Control Problem (OCP) is:

minimize
τ,s

∫ to+Tp

t0

(∥∥(q−qd(s) , ṡ− ṡref
)∥∥2

Q+
∥∥(τ, s̈)∥∥2

R

)
dt

(6)
subject to (1), (2), (3), (4) and where t0 is the current time
instant, Tp > 0 is the predictive horizon, Q and R are posi-
tive definite matrices, and ‖x‖2

Q = xT Qx . The OCP mini-
mizes the geometrical error and the deviation with respect
to the assigned velocity in a weighted fashion. Priority200

can be given to the former by adjusting the weights in Q.
A different widespread approach consists in consider-

ing a virtual kinematic model of the robot (i.e., each joint
is chain of integrators) and adapting the desired motion
at the current iteration to respect the robot limits. To this
purpose, differentiating (5) with respect to time gives:

q̇d = q′d(s) ṡ (7)

where q′d = dqd/ds and ṡ= ds/dt. The term q′d is geomet-
rically tangent to curve qd , while the value of the scalar ṡ
determines the amplitude of vector q̇d . Thus, by varying
the value of ṡ, the timing law can be punctually modified,205

while keeping the same geometrical direction.
A possible choice of the curve parametrization s is the

time of the nominal trajectory. In this case, qd coincides
with the nominal trajectory parametrized with respect to
the desired execution time and q′d(s) coincides with the
nominal joint velocity profile. In the discrete-time scaling
method (with sampling period T ), a decision variable v
can be defined in such a way that:

s(k+1) = s(k)+T v(k) (8)

and at each sampling time, v scales all the desired joint
velocities by the same factor, thus deforming the velocity

profile but preserving the curve shape. When no scaling
occurs, v(k) is equal to 1 and the joint velocity is the same210

as the desired one, whereas v(k) < 1 slows down the tra-
jectory and v(k) > 1 speeds it up. By choosing a proper
value of v(k), the current reference motion can be made
feasible with respect to the robot limits. This principle
is exploited, for example, in [11, 12]. Notice that an ap-215

proach of this kind is computationally very light (the on-
line control problem comes down to a small QP as shown
in [12]), however it is clear that the solution might be very
far from being optimal, as the problem only considers the
reference motion one step at a time. To tackle this issue,220

in this work, we devise a receding horizon method based
on such kinematic approach.

3. Predictive trajectory scaling

3.1. Kinematic model of the manipulator
We consider a kinematic model of the manipulator in

which the joint acceleration is considered as a virtual in-
put to the system, while the motor torque limits are con-
sidered as nonlinear constraints. To do so, each joint is
modeled as a chain of two discrete-time integral systems
with sampling period T and all joints are coupled in a
single state-space representation. The following virtual
linear model of the robot therefore results:

x(k+1) = Ax(k)+Bu(k)

q =
(
In 0n×n

)
x

q̇ =
(
0n×n In

)
x

(9)

where x := (q, q̇) ∈ R2n, q̈ = u and:

A :=
(

In T In
0n×n In

)
∈ R2n×2n, (10)

B :=
(
0.5T 2In T In

)T ∈ R2n×n, (11)

where In and 0n×n denote the n× n identity and null ma-225

trices respectively.
The relation between the robot states and the joint

torques is expressed via the inverse dynamics of the ma-
nipulator in the form:

τ = H(q)q̈+ l(q, q̇) (12)

where H(q) ∈ Rn×n is the symmetric positive-definite in-
ertia matrix, and l(q, q̇) ∈ Rn takes into account centrifu-
gal, Coriolis, friction, gravitational and external torques.
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3.2. Optimal control problem230

Consider task (5) where s is chosen as the time of the
nominal trajectory. Consider now a predictive horizon of
p ∈ N sampling periods ahead such that Tp = pT . To ex-
tend the scaling principle described in Section 2 to the
predictive framework, we consider (7) at each sampling
time in the horizon, that is:

q̇(k+ i) = v(k+ i)q′d
(
s(k+ i)

)
∀i = 1, . . . , p. (13)

If this equation holds, the robot moves along the desired
geometrical curve. Moreover, as mentioned in Section 2,
if v = 1, then also the assigned velocity profile is met.

Thus, a minimization problem to achieve this behavior
can be written as:

minimize
u,v

p

∑
i=1

∥∥∥(q̇(k+i)−q′d(s(k+i))v(k+i) , 1−v(k+i)
)∥∥∥2

Q

+
p

∑
i=1

∥∥∥u(k+ i−1)
∥∥∥2

R
(14)

subject to (9). As in (6), weights in Q should be chosen to
assign higher priority to the geometrical error rather than235

the assigned velocity profile.
A controller based on the minimization of (14) would

only consider the velocity reference signal q′d . This means
that it would not be able to recover from position errors.
However, position errors could occur due to replanning,
out-of-path initial configurations, or numerical drifts. In
order to recover from such errors, the cost function in (14)
is modified by adding a quadratic term for the position
error at the successive time instant k+1, namely:∥∥qd

(
s(k+1)

)
−q(k+1)

∥∥2
P (15)

where P ∈ Rn×n is a positive-definite diagonal matrix.
The inclusion of velocity and acceleration limits in the

OCP is straightforward, due to the linearity of the kine-
matic model (9) in u. Position bounds are not considered240

in this work, as the path is devised in the joint space and
is reasonably assumed to be compliant with the joint posi-
tion ranges of the robot. Nevertheless, they could be eas-
ily included in the formulation, although a further analy-
sis is required to ensure compatibility of the constraints,245

as detailed in [25].

To take into account the torque limits of the joint, we
consider the inverse dynamics (12). The complete OCP
can be therefore written as:

minimize
u,v

p

∑
i=1

∥∥∥(q̇(k+ i)−q′d(s(k+ i))v(k+ i) , 1− v(k+ i)
)∥∥∥2

Q

+
p

∑
i=1

∥∥∥u(k+ i−1)
∥∥∥2

R
+
∥∥∥qd
(
s(k+1)

)
−q(k+1)

∥∥∥2

P

subject to x(k+1) = Ax(k)+Bu(k)

s(k+1) = s(k)+T v(k)

q =
(
In 0n×n

)
x

q̇ =
(
0n×n In

)
x

q̇min ≤ q̇≤ q̇max

q̈min ≤ u≤ q̈max

τmin ≤ H(q)u+ l(q, q̇)≤ τmax

0≤ v≤ 1
(16)

for all i = 1, . . . , p. Note that v is imposed to be non-
negative to avoid motion inversion and to be smaller than
or equal to 1 to allow only the slowdown of the original
timing law.250

Notice that if at time k, q̇min≤ q̇(k)≤ q̇max and ∀q in the
robot workspace τmax− l(q, q̇)≥ 0 and τmin− l(q, q̇)≤ 0,
then (16) is always feasible. See [25] for details.

3.3. QP-approximation of the OCP

Problem (16) is nonlinear in the joint command u and v,
as H and l nonlinearly depend on q and q̇ (which, in turn,
depend on u) and q′d may be a nonlinear function. The
problem can be solved by means of sequential quadratic
programming or interior point methods but the computa-
tion of an optimal solution is typically too slow for real-
time implementation, especially for robot with many de-
grees of freedom. We aim to approximate the problem
with a QP in order to speed up the solution and allow
real-time computation. First, notice that velocity and ac-
celeration limits are linear in u, thanks to the choice of
the acceleration as virtual input in (9). The only nonlin-
ear constraint is the torque one. We use a zero-order lin-
earization of H and l based on the solution obtained at the
previous cycle. Denoting with (u∗,v∗) the solution of the
OCP at time k−1, the approximations of H and l at cycle
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k are computed as:

H
(
q(k+ i)

)
= H

(
q̂(k+ i)

)
(17)

l
(
q(k+ i), q̇(k+ i)

)
= l
(
q̂(k+ i), ˆ̇q(k+ i)

)
(18)

for all i = 1 . . . , p, where:

q̂(k+ i) =
(
In 0n×n

)(
Aix(k)+Ai−1Biu∗

)
(19)

ˆ̇q(k+ i) =
(
0n×n In

)(
Aix(k)+Ai−1Biu∗

)
(20)

We use the same approach to compute future values of255

q′d by using the last prediction of s. Note that at the first
iteration, the predictions of q and q̇ are initialized to the
robot initial state and the prediction of s is the time of the
nominal trajectory.

3.4. Complexity reduction of the OCP260

The practical implementation of MPC strategies to
robotic applications needs a strong reduction of the com-
putational complexity of the algorithm [19, 21]. The
approximation described in Section 3.3 converts the non-
linear OCP into a QP with p(n+1) variables and 2p(n+
1) constraints. However, due to small sampling periods
used in robotics, long-enough horizons imply large val-
ues of p, which do not make the real-time implementa-
tion practical. To reduce the size of the OCP, we adopt a
customized complexity-reduction technique based on the
staircase parametrization of inputs and outputs. To this
purpose, consider that predictive equations can be derived
from the state-space model (9) by forward solving the dif-
ference equation as described in [23, 26] in the following
form:

q1→p = Fpos x(k)+Gpos u1→p (21)
q̇1→p = Fvel x(k)+Gvel u1→p (22)

where q1→p, q̇1→p ∈ Rnp, are respectively the prediction
of q, q̇ at the next p sampling times, u1→p ∈ Rnp is the
input vector along the horizon and Fpos,Fvel ∈Rnp×2p and
Gpos,Gvel ∈ Rnp×np, are the free and forced response ma-
trices calculated from (9) as detailed in [24]. By using an
Input Blocking (IB) strategy, the size of the optimization
vector is reduced. Then, only a subset of prediction time
instants {θ1, . . . ,θh} ⊆ {1, . . . , p}, h < p, is considered .
The resulting approximated predictive equations can be

written as:

qθ =V Fpos x(k)+V GposRu∆ (23)
q̇θ =V Fvel x(k)+V GvelRu∆ (24)

where qθ , q̇θ ∈ Rnh are the prediction of q, q̇ at time in-
stants t0 +θi, u∆ ∈ Rnv, is the parametrized control input,
and V ∈ Rnh×np, R ∈ Rnp×nh are constant binary matri-
ces that can be computed by following the procedure de-
scribed in Appendix A. It is worth noticing that (23), (24)265

can be directly used to compute the predicted outputs in
Section 3.3, instead of (19), (20).

4. Results and discussion

In this section, the proposed approach is tested in sim-
ulation and experiments. First, a comparison of differ-270

ent receding horizon strategies is presented to demon-
strate the validness and the advantages of the proposed
approach. Second, the proposed method is implemented
online on an experimental platform and compared to a
state-of-the-art non-predictive method.275

4.1. Comparison of receding horizon strategies

Numerical simulations have been performed on a Uni-
versal Robot UR10 manipulator (n = 6). The simulations
have been performed by using ROS-Gazebo [27]. The
low-level controller of the robot consists of a cascade P-
PI control architecture with inertia matrix decoupling run-
ning at a sampling period equal to 1 ms. The proportional
and integral gains of the inner velocity loop are equal to
250 rad/s2

rad/s and 15.6 rad/s2

rad respectively. The proportional
gain of the outer position loop is equal to 7 rad/s

rad . The
dynamic model of the manipulator is given by the manu-
facturer. The robot limits are set to:

q̇max =−q̇min = ( 2, 2, 3, 3, 3, 3 ) rad/s, (25)
τmax =−τmin = ( 200, 200, 100, 50, 50, 50 )Nm (26)

q̈max =−q̈min = ( 5, 5, 10, 10, 10, 10 ) rad/s2. (27)

The desired trajectory qd consists of a sinusoidal geo-
metrical path parametrized with respect to the normalized
angular length γ ∈ [0, 1] such that:

qd = qstart +Ωsin(ωγ), (28)

6



Table 1: Tuning parameters of the compared methods.

MPFC PTS QP-PTS

Q=diag(108I6,105) Q=diag(107I6,105) Q=diag(107I6,105)
R=diag(0.5I6,10−7) R=0.5I6 R=0.5I6

P=2.5 ·109I6 P=109I6

Table 2: Selected time instants along the predictive horizon (obtained
from (A.2)).

Tp [s] h θ/T

0.1
3 1, 26, 100
5 1, 7, 26, 57, 100

10 1, 2, 6, 12, 21, 32, 45, 61, 79, 100

0.4
3 1, 101, 400
5 1, 26, 101, 225, 400

10 1, 6, 21, 45, 80, 124, 178, 242, 316, 400

1.0
3 1, 251, 1000
5 1, 63, 251, 563, 1000

10 1, 13, 50, 112, 198, 309, 445, 605, 709, 1000

where qstart = (0,−2, 0,−1.5, 0, 0) rad is the initial joint
configuration, Ω = ( 1.0, 0.5,
1.0, 0.5, 2.5, 1.5π ) rad and ω = 2π are respectively
the sine amplitude and frequency in radians, and
γ : [0, send] → [0, 1], s 7→ γ(s) is a polynomial timing
law defined as:

γ(s) =
6

s5
end

s5− 15
s4

end
s4 +

10
s3

end
s3 (29)

where send is the nominal total time of the desired trajec-
tory. The trajectory can be made more or less demanding
by choosing smaller or larger values of send.

The following algorithms are compared:280

• The nonlinear model predictive path following con-
trol method (MPFC) [9]. As in [10], the method
has been implemented in C++ and ACADO [28], the
OCP is solved via a single-shooting single-iteration
SQP solver, and the input function is parametrized285

with an equally spaced step-wise function along the
predictive horizon.

• The proposed method solving (16), implemented in
C++ and ACADO with a single-shooting single-
iteration SQP solver and the aforementioned equally290

spaced parametrization. This configuration will also
be referred to as predictive trajectory scaling (PTS).

• The proposed method solving (16), implemented as
above, to which the staircase parametrization de-
scribed in Section 3.4 is applied. This method will295

also be called PTS with input blocking (PTS-IB).

• The proposed method to which the QP-
approximation described in Section 3.3 is applied.
The method is implemented in C++ and the QP
algorithm by Goldfarb and Idnani [29] is used. This300

configuration will also be referred to as QP-PTS
(and QP-PTS-IB if input blocking is applied).

The tuning parameters of the algorithms are shown in Ta-
ble 1. All the methods generate an open-loop feedforward
signal that is given as reference to the robot controller. We305

evaluate the mean and maximum geometrical errors emean
and emax and the average scaling ṡmean. The error is mea-
sured as the Euclidean norm of the vector given by the
difference between the measured joint configuration and
the closest point on the desired path. The average scaling310

is evaluated in terms of ratio between the original desired
time send and the actual time taken by the scaling algo-
rithm to complete the whole path.

First, we consider a predictive horizon equal to 0.1 s
and a number of steps of the OCP discretization equal to315

10. Different values of send are considered. Results are
shown in Figure 1. As expected, as send decreases the
desired task becomes more and more demanding, and a
heavier scaling is needed to perform the desired path with
reduced errors. For this reason, ṡmean becomes smaller320

as send decreases. In all tested cases, MPFC, PTS, and
QP-PTS do not show significant differences in terms of
performance.

The effect of different lengths and number of steps in
the OCP discretization is also evaluated. As an example,325

we consider the method QP-PTS in the most demanding
case send = 7 s. Results for predictive horizon equal to
0.1 s, 0.4 s and 1 s and number of steps h = 3, 5, 10 are
shown in Figure 2. The chosen time instants along the
horizon are computed through (A.2) and are shown in Ta-330

ble 2. By comparing the proposed and the evenly spaced
parametrizations, it is possible to see that the latter leads
to poorer results as the horizon increases, as the OCP is
discretized more and more roughly at the beginning of the
predictive horizon. In particular, the average scaling and335

the error worsen as the ratio between the horizon length
and the number of instants grows. This implies that, when
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the evenly spaced parametrization is used, longer predic-
tive horizons may lead to a decay of the control perfor-
mance. On the contrary, the use of longer horizon usually340

leads to better performance (being equal the number of
optimization variables) when the proposed parametriza-
tion is adopted. Similar conclusions can be drawn in case
the parametrization with unevenly spaced intervals is ap-
plied to PTS and MPFC. However, it is worth pointing out345

that the use of a nonlinear dynamic model as in MPFC
waves the advantages of the linear formulation in terms
of computing efficiency and ease of implementation (as
a matter of fact, the parametrization technique proposed
in Appendix A for linear systems only requires the con-350

struction of the binary matrices R and V ).
Table 3 shows an analysis of the computing time taken

by the different methods for the case send = 7 s, predic-
tive horizon equal to 0.1 s and number of discretization
steps equal to 10. The PTS method is taken as bencht-355

est and the computing times are expressed in percentage
with respect to it. Maximum and mean computing times
are shown. Results show that the PTS method gives a sig-
nificant reduction of the computing time (the measured
maximum time is one half compared to MPFC) due to the360

design choices (acceleration as virtual input), being equal
the software and hardware platforms. Table 3 also shows
computing times for the cases MPFC and PTS when the
number of maximum iterations of the SQP is increased
up to 10 (MPFC-10iter and PTS-10iter in Table 3). As365

expected, the computing times grow compared to their
single-iteration counterpart, but the advantage given by
the PTS approach is even more evident. In this respect,
it is worth mentioning that the higher number of maxi-
mum iterations did not lead to significant improvements in370

terms of error and average scaling (less than 2%). Finally,
Table 4 shows the computing time taken by the C++ im-
plementation of the QP-PTS-IB method for h = 3, 5, 10,
showing the suitability of the method in real-time appli-
cations.375

4.2. Implementation and experiments
Experimental tests were also conducted on a Univer-

sal Robot UR10 Version 3.5 (n = 6). The robot trajec-
tory is controlled by means of a ROS-based control ar-
chitecture. Namely, a position controller runs in a ROS380

Kinetic Ubuntu 16.04. The controller communicates with
the robot by means of a TCP connection with sampling

Table 3: Computing times of the different receding horizon methods (for
all methods: predictive horizon Tp = 0.1 s and number of prediction time
instants h = 10). Values are expressed in percentage with respect to the
PTS case

Method tmax tmean

PTS 100% 100%
PTS-IB 100% 100%
PTS-10iter 1540% 1020%
MPFC 200% 160%
MPFC-10iter 3290% 1810%

Table 4: Computing times of QP-PTS method for different values of the
number of prediction instants h.

Method tmax [ms] tmean [ms]

QP-PTS-IB (h = 10) 3.2 0.79
QP-PTS-IB (h = 5) 0.61 0.15
QP-PTS-IB (h = 3) 0.27 0.06

period T = 8 ms. At each sampling period, the scaling
algorithms compute the desired joint positions and veloc-
ities. The controller takes the scaling algorithm position385

output as reference and receives the actual joint position.
The controller output is the sum of a proportional action,
with gain equal to 7 rad/s

rad , and a feedforward term equal
to the scaling algorithm velocity output. The robot veloc-
ity, acceleration, and torque limits have been set as in the390

previous section.
Owing the problem at hand and the available hardware,

both MPFC and PTS execution times exceeded 8 ms and
were therefore not suitable for experimental implementa-
tion. However, the previous section has shown that the395

proposed QP-PTS method gives similar results compared
to other more computationally demanding strategies, thus
significant differences are not expected to show up in the
experiments. Given the impossibility of implementing
such strategies in real time on the considered 6-degree-of-400

freedom robot, we compare the QP-PTS method against
a state-of-the-art non-predictive technique [16, 17]. This
method modifies the velocity profile along the geometri-
cal path, according to the limits of the robot joints, based
on the nominal trajectory evaluated at the current time in-405

stant. In particular, joint limits are converted into mono-
dimensional constraints on the longitudinal acceleration.
If the constraints are compatible, the trajectory can be
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Figure 1: Comparison of receding horizon methods for different values of send (for all methods: predictive horizon Tp = 0.1 s, number of prediction
instants h = 10). Evaluated variables: maximum and mean path error emax and emean and average scaling ṡmean.
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Figure 2: Comparison of QP-PTS and QP-PTS-IB for different predictive horizon Tp and number of prediction instants h. Evaluated variables:
maximum and mean path error emax and emean and average scaling ṡmean.
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scaled without path error, otherwise a deviation arises. In
this case, path tracking is recovered in minimum time by410

means of a nonlinear filter that drives the position and ve-
locity errors to zero.

The QP-PTS-IB method is set with h = 5 and predic-
tive horizon equal to Tp = 50T = 0.4 s. The selected
prediction time instants are computed from (A.2) and415

are given by θ = {0.008,0.016,0.056,0.160,0.4}
s. Two nominal sinusoidal paths are consid-
ered. Referring to (28), Task A has ΩA =
( 0.3, 0.6, 0.7, 0.65, 0.75, 0.8 ) rad, ωA = 2π , and
Task B has ΩB = −ΩA, ωB = 3π . Function γ is a420

seven-trait timing law in s, where send is equal to 3.5 s for
Task A and 4 s for Task B.

Figure 3 shows the measured joint positions and
torques for Task A. The dashed gray line represents the
nominal trajectory without scaling (the nominal torques425

in Figure 3b have been computed from the nominal tra-
jectory by means of the dynamic model of the robot).
As expected, the scaling methods generate a dilation of
the nominal timing law in order to prevent saturation of
the joint actuators. However, according to the trend of γ430

shown in Figure 5a, Figure 3a shows that the joint posi-
tion trend given by the predictive method is significantly
closer to the nominal trajectory, while the non-predictive
method gives a heavier scaling with consequent signifi-
cant deformation of the timing law. In particular, the to-435

tal time taken by the predictive method to reach the final
state is equal to 3.57 s, while the time taken by the non-
predictive method results to be equal to 4.12 s. Moreover,
in Figure 3, it is possible to see that both the scaling meth-
ods keep the joint torques within the bounds (except for440

some spikes reasonably due to the robot controller and
model mismatches). It is worth noticing that the predic-
tive method gives a much smoother trend of the joint vari-
ables compared to the non-predictive case, and this results
in reduced stress of the actuators.445

The values of the measured maximum and mean path
errors are shown in Table 5a. It is worth noticing that the
errors are comparable, and this is mainly due to the track-
ing error introduced by the robot controller. However, in
order to obtain similar results in terms of path-following450

errors, it is necessary for the non-predictive method to
adopt heuristic strategies to prevent joint saturations, as
detailed in [30]. On the other hand, such strategies nec-
essarily give conservative solutions in terms of scaling, as

Table 5: Experimental comparison of the non-predictive and the pro-
posed predictive methods.

(a) Task A

emax [rad] emean [rad] ṡmean

QP-PTS-IB 1.41 ·10−2 5.20 ·10−4 0.98
Non-predictive 1.91 ·10−2 2.01 ·10−2 0.85

(b) Task B

emax [rad] emean [rad] ṡmean

QP-PTS-IB 1.91 ·10−3 8.53 ·10−4 0.83
Non-predictive 1.06 ·10−2 1.24 ·10−3 0.59

shown by the comparison of the two methods.455

Similar conclusions can be drawn for Task B. Figure 4
shows the comparison between the joint positions and
torques obtained by the different methods and the mea-
sured errors are shown in Table 5b. In this case, signifi-
cant saturations of the second joint are expected (dashed460

gray line in Figure 4b). Both methods operate in such a
way that torque saturations are avoided, but the predictive
method gives a better scaling of the original trajectory, as
also shown by the trend of γ in Figure 5b. In this way,
the scaled trajectory results to be much more similar to465

the nominal one and this is also proven by the fact that the
time taken to complete the path is equal to 4.82 s for the
predictive method and 6.78 s for the non-predictive one.
Moreover, joint variables given by the predictive method
are significantly smoother.470
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Figure 3: Comparison of measured joint positions and torques for Task
A. Dashed gray line: nominal reference. Solid black line: QP-PTS-IB
method. Dash-dot red line: non-predictive scaling method. Dashed blue
line: torque limits.
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Figure 5: Comparison of the resulting timing laws for tasks A and B.
Dashed blue line: nominal timing law. Solid black line: timing law
obtained by QP-PTS. Dash-dot gray line: timing law obtained by the
non-predictive method.

5. Conclusions

This paper has proposed a new predictive trajectory
scaling technique for robot manipulators under velocity,
acceleration, and torque limits. The technique is able to
online modify the desired timing law of the trajectory, in475

order to preserve the geometrical path if the desired mo-
tion is infeasible with respect to the robot limits. Com-
pared to other receding horizon techniques, the proposed
approach gives a dramatic reduction of the computatio-
nal complexity, allowing the real-time implementation on480

complex systems without decays from the performance
viewpoint, as shown by the numerical tests. Moreover,
experiments show that the proposed method outperforms
state-of-the-art non-predictive technique.

Appendix A. Implementation of the complexity-485

reduction technique

As mentioned in Section 3.1, the size of the OCP is
reduced to decrease the required computing time of the
algorithm. An IB technique reduces the number of con-
trol variables [24, 31]. and the number of prediction time-490

instants is reduced as well by choosing only a small num-
ber of nodes along the predictive horizon.

Appendix A.1. Reducing the number of optimization
variables

The basic idea of IB is that the control input is con-
sidered to be constant along several sampling periods
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in the optimization problem. In other words, the con-
trol input is parametrized as a staircase function along
the control horizon, and the steps of the parametrization
occur at multiples of the sampling period. To imple-
ment such technique, consider an auxiliary input vector
u∆ := (u∆1, . . . ,u∆h) ∈ Rnh, with h < p, such that:

u1→p = Ru∆ (A.1)

where R ∈ Rnp×nh is the so-called blocking matrix. It is495

a Boolean matrix that parametrizes the optimization vari-
able u1→p by means of a new smaller vector u∆. Now, de-
fine a blocking vector ∆ = (∆1, . . . ,∆h), whose elements
represents the number of sampling periods along which
each control input is forced to be constant. A simple pro-500

cedure to compute the blocking matrix R given the block-
ing vector ∆ is shown in Algorithm 1.

For the sake of clarity, consider a SISO system and
a control horizon p = 5. Imposing u(k + 2) = u(k +
3),u(k+ 4) = u(k+ 5) gives ∆ = [1, 2, 2]. Therefore, R
results to be:

R =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 ∈ Rnp×nh

Appendix A.2. Reducing the number of prediction time
instants

The computational burden of the OCP also depends on505

the number of prediction time instants. To reduce it, only
a few nodes along the horizon are considered in the opti-
mization. Given the predictive matrices in (21), each ith
block of n rows corresponds to the prediction of the n out-
puts at time instant k+ i. Now consider an ordered sub-510

set θ ⊆ {1, . . . , p}, with cardinality equal to h < p (i.e., a
subset of h predictive time instants). Aiming to select the
output prediction only at times k+ i, i ∈ θ , it is possible
to introduce a selection matrix V ∈ Rnp×nh, which selects
the rows corresponding to such time instants.515

Matrix V is a Boolean matrix that can be easily com-
puted as illustrated in Algorithm 2. As an illustrative ex-
ample, consider a SISO system and a predictive horizon
p = 5. To consider only the 1st, 3rd, and 5th time instants
in the prediction, it results θ = {1,3,5} and h = 3, which

Algorithm 1 Computation of the Blocking Matrix R

Input: n, ∆

Output: R
irow = 1, h = length(∆), p = ∑i ∆(i)
R = 0np×nh
for i = 1 to v do

columns = [n(i−1)+1, . . . ,ni ]
for j = 1 to ∆(i) do

rows = [ irow, . . . , irow +n−1 ]
R[ rows; columns ] = In
irow = irow +n

end for
end for

Algorithm 2 Computation of the selection matrix V

Input: n, p, θ

Output: V
h = length(θ)
V = 0nh×np
for i = 1 to h do

rows = [n(i−1)+1, . . . ,ni ]
columns = [n(θ(i)−1)+1, . . . ,nθ(i) ]
V [ rows; columns ] = In

end for

gives:

V =

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 ∈ Rnh×np

Combining both the blocking matrix R and the selec-
tion matrix V , the new predictive equations (23), (24) re-
sult.

Appendix A.3. Choice of R and V
It is necessary to choose ∆ and θ such that the reduced520

predicted equations (23) and (24) give a good approxima-
tion of the original equations (21) (22). Note that ∆ and
θ are chosen a priori, so they do not change during the
execution of the algorithm (and so do the matrices R and
V ).525

An optimal choice cannot be obtained, since the ref-
erence trajectories are non-repetitive in general. Based
on the consideration that the parametrization should give
more importance to the initial part of the horizon rather
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than to the final one and that the first control step should
coincide with the first sampling period, θ and ∆ are cho-
sen via the following parabolic equation:

θi =
p−1

(h−1)2 i2−2
p−1

(h−1)2 i+
(

p−1
(h−1)2 +1

)
∆ =

[
1, θ2−θ1, . . . ,θh−θh−1

] (A.2)

for i = 1, . . . ,h and rounding each element to the nearest
integer.
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