It is shown that any three-dimensional periodic configuration that is strictly stable for the area functional is exponentially stable for the surface diffusion flow and for the Mullins–Sekerka or Hele–Shaw flow. The same result holds for three-dimensional periodic configurations that are strictly stable with respect to the sharp-interface Ohta–Kawaski energy. In this case, they are exponentially stable for the so-called modified Mullins–Sekerka flow.

Nonlinear stability results for the modified Mullins–Sekerka and the surface diffusion flow / Acerbi, E.; Fusco, N.; Julin, V.; Morini, M.. - In: JOURNAL OF DIFFERENTIAL GEOMETRY. - ISSN 0022-040X. - 113:1(2019), pp. 1-53. [10.4310/jdg/1567216953]

Nonlinear stability results for the modified Mullins–Sekerka and the surface diffusion flow

E. Acerbi;N. Fusco;M. Morini
2019-01-01

Abstract

It is shown that any three-dimensional periodic configuration that is strictly stable for the area functional is exponentially stable for the surface diffusion flow and for the Mullins–Sekerka or Hele–Shaw flow. The same result holds for three-dimensional periodic configurations that are strictly stable with respect to the sharp-interface Ohta–Kawaski energy. In this case, they are exponentially stable for the so-called modified Mullins–Sekerka flow.
2019
Nonlinear stability results for the modified Mullins–Sekerka and the surface diffusion flow / Acerbi, E.; Fusco, N.; Julin, V.; Morini, M.. - In: JOURNAL OF DIFFERENTIAL GEOMETRY. - ISSN 0022-040X. - 113:1(2019), pp. 1-53. [10.4310/jdg/1567216953]
File in questo prodotto:
File Dimensione Formato  
AFJM-Journal-Version.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 376.61 kB
Formato Adobe PDF
376.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2863122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact