Serine racemase (SR) catalyses two reactions: the reversible racemisation of L-serine and the irreversible dehydration of L- and D-serine to pyruvate and ammonia. SRs are evolutionarily related to serine dehydratases (SDH) and degradative threonine deaminases (TdcB). Most SRs and TdcBs - but not SDHs - are regulated by nucleotides. SR binds ATP cooperatively and the nucleotide allosterically stimulates the serine dehydratase activity of the enzyme. A H-bond network comprising five residues (T52, N86, Q89, E283 and N316) and water molecules connects the active site with the ATP-binding site. Conservation analysis points to Q89 as a key residue for the allosteric communication, since its mutation to either Met or Ala is linked to the loss of control of activity by nucleotides. We verified this hypothesis by introducing the Q89M and Q89A point mutations in the human SR sequence. The allosteric communication between the active site and the allosteric site in both mutants is almost completely abolished. Indeed, the stimulation of the dehydratase activity by ATP is severely diminished and the binding of the nucleotide is no more cooperative. Ancestral state reconstruction suggests that the allosteric control by nucleotides established early in SR evolution and has been maintained in most eukaryotic lineages.

Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP / Canosa, Andrea V; Faggiano, Serena; Marchetti, Marialaura; Armao, Stefano; Bettati, Stefano; Bruno, Stefano; Percudani, Riccardo; Campanini, Barbara; Mozzarelli, Andrea. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 8:1(2018), pp. 9016.1-9016.13. [10.1038/s41598-018-27227-1]

Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP

Canosa, Andrea V;Faggiano, Serena;Marchetti, Marialaura;ARMAO, STEFANO;Bettati, Stefano;Bruno, Stefano;Percudani, Riccardo;Campanini, Barbara;Mozzarelli, Andrea
2018-01-01

Abstract

Serine racemase (SR) catalyses two reactions: the reversible racemisation of L-serine and the irreversible dehydration of L- and D-serine to pyruvate and ammonia. SRs are evolutionarily related to serine dehydratases (SDH) and degradative threonine deaminases (TdcB). Most SRs and TdcBs - but not SDHs - are regulated by nucleotides. SR binds ATP cooperatively and the nucleotide allosterically stimulates the serine dehydratase activity of the enzyme. A H-bond network comprising five residues (T52, N86, Q89, E283 and N316) and water molecules connects the active site with the ATP-binding site. Conservation analysis points to Q89 as a key residue for the allosteric communication, since its mutation to either Met or Ala is linked to the loss of control of activity by nucleotides. We verified this hypothesis by introducing the Q89M and Q89A point mutations in the human SR sequence. The allosteric communication between the active site and the allosteric site in both mutants is almost completely abolished. Indeed, the stimulation of the dehydratase activity by ATP is severely diminished and the binding of the nucleotide is no more cooperative. Ancestral state reconstruction suggests that the allosteric control by nucleotides established early in SR evolution and has been maintained in most eukaryotic lineages.
2018
Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP / Canosa, Andrea V; Faggiano, Serena; Marchetti, Marialaura; Armao, Stefano; Bettati, Stefano; Bruno, Stefano; Percudani, Riccardo; Campanini, Barbara; Mozzarelli, Andrea. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 8:1(2018), pp. 9016.1-9016.13. [10.1038/s41598-018-27227-1]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2849473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact