Given a Kähler manifold (Z, J, ω) and a compact real submanifold M ⊂ Z, we study the properties of the gradient map associated with the action of a noncompact real reductive Lie group G on the space of probability measures on M. In particular, we prove convexity results for such map when G is Abelian and we investigate how to extend them to the non-Abelian case

Convexity theorems for the gradient map on probability measures / Biliotti, Leonardo; Raffero, Alberto. - In: COMPLEX MANIFOLDS. - ISSN 2300-7443. - 5:1(2018), pp. 133-145. [10.1515/coma-2018-0008]

Convexity theorems for the gradient map on probability measures

Biliotti, Leonardo;
2018-01-01

Abstract

Given a Kähler manifold (Z, J, ω) and a compact real submanifold M ⊂ Z, we study the properties of the gradient map associated with the action of a noncompact real reductive Lie group G on the space of probability measures on M. In particular, we prove convexity results for such map when G is Abelian and we investigate how to extend them to the non-Abelian case
2018
Convexity theorems for the gradient map on probability measures / Biliotti, Leonardo; Raffero, Alberto. - In: COMPLEX MANIFOLDS. - ISSN 2300-7443. - 5:1(2018), pp. 133-145. [10.1515/coma-2018-0008]
File in questo prodotto:
File Dimensione Formato  
1701.04779.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 234.48 kB
Formato Adobe PDF
234.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2848551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact