The present study investigated the effect of somatic cell count, lactose, and pH on sheep milk composition, coagulation properties (MCP), and curd firming (CF) parameters. Individual milk samples were collected from 1,114 Sarda ewes reared in 23 farms. Milk composition, somatic cell count, single point MCP (rennet coagulation time, RCT; curd firming time, k20; and curd firmness, a30, a45, and a60), and CF model parameters were achieved. Phenotypic traits were statistically analyzed using a mixed model to estimate the effects of the different levels of milk somatic cell score (SCS), lactose, and pH, respectively. Additive genetic, herd, and residual correlations among these 3 traits, and with milk composition, MCP and CF parameters, were inferred using a Bayesian approach. From a phenotypic point of view, higher SCS levels caused a delayed gelification of milk. Lactose concentration and pH were significant for many milk quality traits, with a very intense effect on both coagulation times and curd firming. These traits (RCT, RCT estimated using the curd firming over time equation, and k20) showed an unfavorable increase of about 20% from the highest to the lowest level of lactose. Milk samples with pH values lower than 6.56 versus higher than 6.78 were characterized by an increase of RCT (from 6.00 to 14.3 min) and k20(from 1.65 to 2.65 min) and a decrease of all the 3 curd firmness traits. From a genetic point of view, the marginal posterior distribution of heritability estimates evidenced a large and exploitable variability for all 3 phenotypes. The mean intra-farm heritability estimates were 0.173 for SCS, 0.418 for lactose content, and 0.206 for pH. Lactose (favorably), and SCS and pH (unfavorably), at phenotypic and genetic levels, were correlated mainly with RCT and RCT estimated using the curd firming over time equation and scarcely with the other curd firming traits. The SCS, lactose, and pH were significantly correlated with each other's. In conclusion, results reported in the present study suggest that SCS, pH, and lactose affect, contemporarily and independently, milk quality and MCP. These phenotypes, easily available during milk recording schemes measured by infrared spectra prediction, could be used as potential indicators traits for improving cheese-making ability of ovine milk.

Phenotypic and genetic relationships between indicators of the mammary gland health status and milk composition, coagulation, and curd firming in dairy sheep / Pazzola, Michele; Cipolat-Gotet, Claudio; Bittante, Giovanni; Cecchinato, Alessio; Dettori, Maria L.; Vacca, Giuseppe M.. - In: JOURNAL OF DAIRY SCIENCE. - ISSN 0022-0302. - 101:4(2018), pp. 3164-3175. [10.3168/jds.2017-13975]

Phenotypic and genetic relationships between indicators of the mammary gland health status and milk composition, coagulation, and curd firming in dairy sheep

Cipolat-Gotet, Claudio;
2018-01-01

Abstract

The present study investigated the effect of somatic cell count, lactose, and pH on sheep milk composition, coagulation properties (MCP), and curd firming (CF) parameters. Individual milk samples were collected from 1,114 Sarda ewes reared in 23 farms. Milk composition, somatic cell count, single point MCP (rennet coagulation time, RCT; curd firming time, k20; and curd firmness, a30, a45, and a60), and CF model parameters were achieved. Phenotypic traits were statistically analyzed using a mixed model to estimate the effects of the different levels of milk somatic cell score (SCS), lactose, and pH, respectively. Additive genetic, herd, and residual correlations among these 3 traits, and with milk composition, MCP and CF parameters, were inferred using a Bayesian approach. From a phenotypic point of view, higher SCS levels caused a delayed gelification of milk. Lactose concentration and pH were significant for many milk quality traits, with a very intense effect on both coagulation times and curd firming. These traits (RCT, RCT estimated using the curd firming over time equation, and k20) showed an unfavorable increase of about 20% from the highest to the lowest level of lactose. Milk samples with pH values lower than 6.56 versus higher than 6.78 were characterized by an increase of RCT (from 6.00 to 14.3 min) and k20(from 1.65 to 2.65 min) and a decrease of all the 3 curd firmness traits. From a genetic point of view, the marginal posterior distribution of heritability estimates evidenced a large and exploitable variability for all 3 phenotypes. The mean intra-farm heritability estimates were 0.173 for SCS, 0.418 for lactose content, and 0.206 for pH. Lactose (favorably), and SCS and pH (unfavorably), at phenotypic and genetic levels, were correlated mainly with RCT and RCT estimated using the curd firming over time equation and scarcely with the other curd firming traits. The SCS, lactose, and pH were significantly correlated with each other's. In conclusion, results reported in the present study suggest that SCS, pH, and lactose affect, contemporarily and independently, milk quality and MCP. These phenotypes, easily available during milk recording schemes measured by infrared spectra prediction, could be used as potential indicators traits for improving cheese-making ability of ovine milk.
2018
Phenotypic and genetic relationships between indicators of the mammary gland health status and milk composition, coagulation, and curd firming in dairy sheep / Pazzola, Michele; Cipolat-Gotet, Claudio; Bittante, Giovanni; Cecchinato, Alessio; Dettori, Maria L.; Vacca, Giuseppe M.. - In: JOURNAL OF DAIRY SCIENCE. - ISSN 0022-0302. - 101:4(2018), pp. 3164-3175. [10.3168/jds.2017-13975]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2843082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact