We report on the fabrication and characterization of Cu(In,Ga)Se2 (CIGS)-based thin film bifacial solar cells using Al-doped ZnO (AZO) as cost-effective and non-toxic transparent back contact. We show that, by depositing both CIGS and AZO by Low Temperature Pulsed Electron Deposition at a maximum temperature of 250 °C, a good ohmic contact is formed between the two layers and good quality solar cells can be fabricated as a result. Photovoltaic efficiencies as high as 9.3% (front illumination), 5.1% (backside illumination) and 11.6% (bifacial illumination) have been obtained so far. These values are remarkably higher than those previously reported in the literature. We demonstrate that this improvement is ascribed to the low-temperature deposition process that avoids the formation of Ga2O3 at the CIGS/AZO interface and favours the formation of a low-resistivity contact in agreement with device simulations.

Low temperature deposition of bifacial CIGS solar cells on Al-doped Zinc Oxide back contacts / Cavallari, Nicholas; Pattini, Francesco; Rampino, Stefano; Annoni, Filippo; Barozzi, Mario; Bronzoni, Matteo; Gilioli, Edmondo; Gombia, Enos; Maragliano, Carlo; Mazzer, Massimo; Pepponi, Giancarlo; Spaggiari, Giulia; Fornari, Roberto. - In: APPLIED SURFACE SCIENCE. - ISSN 0169-4332. - 412:(2017), pp. 52-57. [10.1016/j.apsusc.2017.03.242]

Low temperature deposition of bifacial CIGS solar cells on Al-doped Zinc Oxide back contacts

CAVALLARI, NICHOLAS;PATTINI, Francesco;RAMPINO, Stefano;ANNONI, Filippo;BRONZONI, MATTEO;GOMBIA, Enos;SPAGGIARI, GIULIA;FORNARI, Roberto
2017-01-01

Abstract

We report on the fabrication and characterization of Cu(In,Ga)Se2 (CIGS)-based thin film bifacial solar cells using Al-doped ZnO (AZO) as cost-effective and non-toxic transparent back contact. We show that, by depositing both CIGS and AZO by Low Temperature Pulsed Electron Deposition at a maximum temperature of 250 °C, a good ohmic contact is formed between the two layers and good quality solar cells can be fabricated as a result. Photovoltaic efficiencies as high as 9.3% (front illumination), 5.1% (backside illumination) and 11.6% (bifacial illumination) have been obtained so far. These values are remarkably higher than those previously reported in the literature. We demonstrate that this improvement is ascribed to the low-temperature deposition process that avoids the formation of Ga2O3 at the CIGS/AZO interface and favours the formation of a low-resistivity contact in agreement with device simulations.
2017
Low temperature deposition of bifacial CIGS solar cells on Al-doped Zinc Oxide back contacts / Cavallari, Nicholas; Pattini, Francesco; Rampino, Stefano; Annoni, Filippo; Barozzi, Mario; Bronzoni, Matteo; Gilioli, Edmondo; Gombia, Enos; Maragliano, Carlo; Mazzer, Massimo; Pepponi, Giancarlo; Spaggiari, Giulia; Fornari, Roberto. - In: APPLIED SURFACE SCIENCE. - ISSN 0169-4332. - 412:(2017), pp. 52-57. [10.1016/j.apsusc.2017.03.242]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2823361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 35
social impact