We prove regularity results such as interior Lipschitz regularity and boundary continuity for the Cauchy-Dirichlet problem associated to a class of parabolic equations inspired by the evolutionary p-Laplacian, but extending it at a wide scale. We employ a regularization technique of viscosity-type that we find interesting in itself.
The Cauchy-Dirichlet problem for a general class of parabolic equations / Baroni, Paolo; Lindfors, Casimir. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 34:3(2017), pp. 593-624. [10.1016/j.anihpc.2016.03.003]
The Cauchy-Dirichlet problem for a general class of parabolic equations
BARONI, PAOLO;
2017-01-01
Abstract
We prove regularity results such as interior Lipschitz regularity and boundary continuity for the Cauchy-Dirichlet problem associated to a class of parabolic equations inspired by the evolutionary p-Laplacian, but extending it at a wide scale. We employ a regularization technique of viscosity-type that we find interesting in itself.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BL-CauchyDirichlet.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
396.94 kB
Formato
Adobe PDF
|
396.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.