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THE CAUCHY-DIRICHLET PROBLEM
FOR A GENERAL CLASS OF PARABOLIC EQUATIONS

PAOLO BARONI AND CASIMIR LINDFORS

ABSTRACT. We prove regularity results such as interior Lipschitz regularity and boundary
continuity for the Cauchy-Dirichlet problem associated to a class of parabolic equations
inspired by the evolutionary p-Laplacian, but extending it at a wide scale. We employ a
regularization technique of viscosity-type that we find interesting in itself.

1. INTRODUCTION

The aim of this paper is the study of the behaviour of solutions to a wide class of
nonlinear parabolic equations modeled after

ut − div
(g(|Du|)
|Du|

Du
)

= 0 in ΩT := Ω× (0, T ) ⊂ Rn × R, (1.1)

n ≥ 2, where Ω is a bounded domain with C1,β boundary and g : R+ → R+ is a C1

function satisfying

g0 − 1 ≤ Og(s) :=
sg′(s)

g(s)
≤ g1 − 1 for every s > 0 (1.2)

with 1 < g0 ≤ g1 < ∞. Notice that we can assume g0 < g1 without loss of generality.
Indeed, ifOg(s) is constant, sayOg(s) = p−1 for some p > 1, a simple integration shows
that g(s) = sp−1 up to a constant factor, and therefore in this case (1.1) gives back the
evolutionary p-Laplacian widely studied in particular by DiBenedetto, see the monograph
[14]. This reveals that (1.1) is a natural generalization of the p-Laplacian, and in effect
this class of growth conditions was mathematically introduced exactly in these terms by
Lieberman in [28], even if this kind of condition appears earlier in the applications, see the
forthcoming lines.

We stress that quite a comprehensive study of non-negative solutions to the equation

ut − div
[
ϕ′(u)Du

]
= 0 (1.3)

where the function ϕ : [0,∞)→ [0,∞) satisfies

0 < a ≤ Oϕ(s) :=
sϕ′(s)

ϕ(s)
≤ 1

a
, for s > 0; 1 + a ≤ Oϕ(s) for s > s0 (1.4)

for some a ∈ (0, 1) and some s0 > 0 has been provided by Dahlberg and Kenig [10, 11];
see also the books [12, 35]. Clearly, while (1.3) is a generalization of the porous medium
equation that happens when ϕ(u) = um, m > 0, in the same spirit (1.1) can be seen as a
generalization of the p-Laplacian.

As in (1.4), we shall also consider a more stringent growth assumption for g for large
values of its argument. In addition to (1.2), we shall assume that there exist constants
c`, ε > 0 such that

g(s) ≥ c`s
n−2
n+2 +ε for any s ≥ 1. (1.5)
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2 PAOLO BARONI AND CASIMIR LINDFORS

Note that in the p-Laplacian case (1.5) reads precisely as p > 2n/(n + 2), a completely
natural assumption in the theory of the evolutionary p-Laplacian operator, see [14, 25, 1].
Note moreover that (1.5) is implied by assuming g0 > 2n/(n+ 2), see Paragraph 2.2.

The regularity for the elliptic and variational counterpart of (1.1) is quite well under-
stood, see for instance [28, 3, 9, 16] for the first argument and [17, 20, 7, 8] for the second,
just to cite some indicative references. In the parabolic setting, however, very few re-
sults are available, and some of them only in particular cases: to our knowledge, only
[22, 23, 29, 30], all by Lieberman and Hwang, and the recent [5].

The difficulty, in particular in finding zero-order results, stems from several facts, the
main one perhaps being that the equation has very different behaviour, already in the p-
Laplacian case, in the degenerate (p ≥ 2) and singular (p < 2) cases. In the degenerate case
phenomena such as expansion of positivity occur, see [15, 26], and the diffusion dominates
[13]. On the other hand, in the singular case the evolutionary character dominates [6] and
extinction of positive solutions in finite time could happen, see [14]. In our general setting
the degenerate case occurs when s 7→ g(s)/s is increasing, and when it is decreasing we
have the singular case. However, it might also happen that s 7→ g(s)/s has no monotonicity
whatsoever, making the handling of the equation all the more difficult. The comprehension
of the interaction of these different phenomena is the key for a better understanding of the
behaviour of local solutions to (1.1), and in this paper we hope to start to clarify this
difficult point, which will be the object of future investigations.

The class of differential operators we study, besides being quite a general extension of
a well-known operator, finds important applications in the applied sciences, also in view
of the following observation. Take the convex primitive G of g and consider the general
minimization problem

u ∈ u0 +W 1,1
0 (Ω) 7→

∫
Ω

G(|Du|) dx; (1.6)

it is often convenient to have energies with a precise dependence on |Du| of more general
type than monomial (that is, the case of the p-Dirichlet energy or appropriate extensions).
For instance, in mechanics, fluid dynamics and magnetism, as first approximation it is cus-
tomary to have dependencies of the energy on the modulus of the gradient of monomial
type but with exponent depending on the size of |Du|, in order to have mathematical mod-
els fitting the experimental data. In this case g is given by the gluing of different monomials
(see the example in Paragraph 2.3). At this point, elliptic and parabolic equations having
the growth described in (1.1) arise naturally as Euler equations or flows of the functional
in (1.6). In [34], for instance, the two-dimensional stationary, irrotational subsonic flow of
a compressible fluid is described using an energy defined in the following way:

G(s) = −
(

1− γ − 1

2
s2
) γ
γ−1

for small s, G(s) = quadratic otherwise, (1.7)

where γ ∈ (1, 2) is the exponent in the law p ≈ ργ characteristic of polytropic gases.
More in general, see [4, 18, 19], one is lead to consider quasilinear static equations in

dimension two and three of the type

div
[
ρ(|Du|2)Du

]
= 0,

with Du representing the velocity field of the flow and q = |Du| being the speed of the
flow. In this context one introduces the Mach number

M2 ≡ [M(q)]2 := − 2q2

ρ(q2)
ρ′(q2)

(note that we must have ρ′ < 0). In our context, where g(s) = ρ(s2)s, we compute
Og(s) = 1 −M(s)2. The general theory asserts that a point is elliptic if M < 1 and in
this case the flow is subsonic, while if M > 1 the point is hyperbolic and the flow there is
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supersonic. If M = 1 the flow is called sonic. A solution of the boundary value problem
is called a subsonic (supersonic) flow according to whether all points are subsonic (super-
sonic); note that mixed, or transonic flows can exists, with obvious meaning. However,
if for some reason we know that the flow maintains a controlled, small speed q, then the
problem falls in the class of operators we consider; the approximation in (1.7) is a way to
study flows in the subsonic regime.

The object of our study will be the Cauchy-Dirichlet problemut − divA(Du) = 0 in ΩT ,

u = ψ on ∂pΩT ,
(1.8)

where A : Rn → Rn is a C1 vector field modeled after the one appearing in (1.1). In
particular, we assume it satisfies the following ellipticity and growth conditions:

〈DA(ξ)λ, λ〉 ≥ ν g(|ξ|)
|ξ|
|λ|2

|DA(ξ)| ≤ L g(|ξ|)
|ξ|

, (1.9)

for any ξ ∈ Rn \ {0}, λ ∈ Rn and with structural constants 0 < ν ≤ 1 ≤ L; we assume
without loss of generality that A(0) = 0. The function g is a C1 function as in (1.1),
satisfying only (1.2) and (1.5). For what concerns ψ, we assume it to be continuous in
∂pΩT with modulus of continuity ωψ with respect to the natural distance distpar,G, that is,
there exists a continuous, concave function ωψ : R+ → R+ with ωψ(0) = 0 such that

|ψ(x, t)− ψ(y, s)| ≤ ωψ
(

max{|x− y|, [G−1(1/|t− s|)]−1}
)

for every (x, t), (y, s) ∈ ∂pΩT . As already mentioned, Ω is a bounded domain of Rn,
n ≥ 2, whose boundary is of class C1,β for some β ∈ (0, 1); we shall provide some more
details at the beginning of Section 2.

In this setting, we state the main result of our paper, which concerns at the same time
the existence and regularity of a (unique) solution to (1.8).

Theorem 1.1. There exists a unique solution u, in the sense of Definition 2, to the Cauchy-
Dirichlet problem (1.8), where the vector field A satisfies the assumptions (1.9), with g ∈
C1(R+) satisfying (1.2) and (1.5). In particular, u is continuous up to the boundary and
moreover if the boundary datum ψ is Hölder continuous with respect to the natural metric
distpar,G defined in (2.1), then so is u.

The following theorem gives some properties together with quantitative estimates for
the solution described in the previous statement.

Theorem 1.2. Let u be the solution to (1.8) given by Theorem 1.1. Then u is locally
Lipschitz continuous and the following estimate holds:

‖Du‖L∞(QR) ≤ c
(∫

Q2R

[
G(|Du|) + 1

]
dx dt

)max{ 1
2 ,

2
ε(n+2)}

(1.10)

for every parabolic cylinder Q2R b ΩT . The constant c depends on n, g0, g1, ν, L, ε
and c`. Moreover, there exists a modulus of continuity ωu : R+ 7→ R+ depending on
n, g0, g1, ν, L, ε, c`, ‖ψ‖L∞ , ωψ, ∂Ω such that

|u(x, t)− u(y, s)| ≤ ωu
(

max
{
|x− y|,

[
G−1

(
1/|t− s|

)]−1})
(1.11)

for every (x, t), (y, s) ∈ ΩT
p
.
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We refer the reader to Paragraph 2.1 for the definitions of the standard parabolic cylin-
ders QR(x0, t0) and of the parabolic closure of ΩT . We also mention that in the standard
case of the evolutionary p-Laplacian our estimate (1.10) gives back exactly the gradient
sup-estimate available for degenerate and singular equations, see [14, Chapter VIII, Theo-
rems 5.1 & 5.2].

Remark 1. Theorems 1.1 and 1.2 hold for a wider class of operators generalizing (1.1),
which allow the presence of a function g that is not C1 but merely Lipschitz. Indeed,
we may consider Lipschitz functions g : R+ → R+ satisfying (1.2) almost everywhere
and vector fields A : Rn → Rn in W 1,∞(Rn) satisfying the monotonicity and Lipschitz
assumptions 

〈A(ξ1)−A(ξ2), ξ1 − ξ2〉 ≥ ν
g(|ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|2

|A(ξ1)−A(ξ2)| ≤ L g(|ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|,
, (1.12)

for every ξ1, ξ2 ∈ Rn such that |ξ1|+ |ξ2| 6= 0 and for some 0 < ν ≤ 1 ≤ L. For a proof
of this fact see the end of Section 6.

1.1. Novelties and technical tools. We believe that the main interest of this paper, apart
from the results of Theorems 1.1 and 1.2 themselves (that will be used for instance in
[31]), is the development of some tools for the treatment of the difficult equation (1.8)
(see Paragraph 2.3). We prove the Lipschitz estimate as an a priori estimate for problems
enjoying further regularity. Instead of using a regularization of the type used in [28, 22, 29],
the regularization we employ is of viscosity type, closer to that in [2]: we consider a vector
field of the type

Aε(ξ) := (φε ∗ A)(ξ) + ε
(
1 + |ξ|

)p−2
ξ, ξ ∈ Rn, ε ∈ (0, 1),

where p � 1 is a large exponent and {φε} a family of mollifiers. This allows us to
overcome the difficulties of deriving regularity estimates for the approximant problems,
which we were not able to find in the literature. At this point continuity up to the boundary
becomes an essential ingredient in the proof of the convergence, as well as the fact that we
are solving a Cauchy-Dirichlet problem and therefore have a uniform bound on ‖uε‖L∞
given by the maximum principle.

We use the a priori Lipschitz continuity (and the further regularity) of the approximating
solutions in a way inspired by [27]. First, we employ the fact that the function v = |Du|2
is a subsolution to a similar problem, see Lemma 3.1. Then, we define an appropriate
intrinsic geometry (see (3.7)) depending on the growth of the approximating vector field
Aε, which allows us to rebalance estimates, in the sense that the weight appearing in the
Caccioppoli estimate for the equation satisfied by v turns out to be essentially constant, see
(3.8). Here the fact that we can bound the supremum of Du, and thus of v, from above
is essential. Finally, we conclude the proof using an argument based on an alternative in
order to get rid of the possible dependence on ε in terms of the aforementioned geometry,
depending in turn on the growth of Aε.

2. PRELIMINARY MATERIAL: NOTATION, THE FUNCTION g, MISCELLANEA

For what concerns ∂Ω, we assume that there exists a radius RΩ > 0 such that for every
point x0 ∈ ∂Ω there is a unit vector êx0 such that the restriction of ∂Ω is a graph of a
C1,β function in BRΩ along the êx0 direction, in the following sense: with T being an
orthogonal transformation that maps êx0

into (0, 0, . . . , 0, 1), for every 0 < r ≤ RΩ it
holds

T−1(∂Ω− x0) ∩
(
B′r × (−r, r)

)
= graph θ
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(see below for the precise meaning of these symbols) with θ ≡ θx0
∈ C1,β(B′r), θ(B′r) ⊂

(−r, r) and the C1,β norm of θ uniformly bounded:

[θ]C1,β ≤ Θ.

Note that without loss of generality, we can take êx0 as the inner normal vector in x0:
{v : 〈v, êx0

〉 = 0} is the tangent hyperplane to Ω in x0; therefore Dθ(0) = 0. Dθ is
the full gradient of θ with respect to its n − 1 variables. Finally, by saying that a constant
depends on ∂Ω, we shall mean it depends on Θ.

2.1. Notation. We denote by c a general constant always larger than or equal to one,
possibly varying from line to line; relevant dependencies on parameters will be emphasized
using parentheses, i.e., c1 ≡ c1(n, p, q) means that c1 depends on n, p, q. For the ease of
notation, we shall also use the following abbreviation:

data := {n, g0, g1, ν, L}.
We denote by

BR(x0) := {x ∈ Rn : |x− x0| < R}
the open ball with center x0 and radius R > 0; when clear from the context or otherwise
not important, we shall omit denoting the center as follows: BR ≡ BR(x0). The standard
parabolic cylinder is defined as

QR(x0, t0) := BR(x0)× (t0 −R2, t0),

while we define the natural cylinder as

QGR(x0, t0) := BR(x0)× (t0 − [G(1/R)]−1, t0).

The latter is strictly linked to the scaling of the equation, see Paragraph 2.6. Unless other-
wise explicitly stated, different balls and cylinders in the same context will have the same
center. We shall denote, for a factor α > 0, by αBR the ball BαR and by αQR(x0, t0) the
cylinder BαR(x0)× (t0 − (αR)2, t0); similarly for αQGR(x0, t0). The parabolic boundary
of a cylindrical domain K = D× Γ, where D is an open domain and Γ an open interval of
the real line, is defined as

∂pK :=
(
D × inf Γ

)
∪
(
∂D × Γ

)
.

Naturally, the parabolic closure ofK is thenKp := K∪∂pK. Accordingly with the custom-
ary use in the parabolic setting, when considering a sub-cylinder K (as above) compactly
contained in ΩT , we shall mean that D b Ω and 0 < inf Γ < sup Γ ≤ T ; we will write in
this case K b ΩT . By ∂Ω− x0 we mean the set {x ∈ Rn : x+ x0 ∈ ∂Ω}. The standard
parabolic distance is

distpar

(
(x, t), (y, s)

)
:= max

{
|x− y|,

√
|t− s|

}
for any (x, t), (y, s) ∈ Rn+1, while a distance strictly related to the scaling properties of
the differential operator is

distpar,G

(
(x, t), (y, s)

)
:= max

{
|x− y|,

[
G−1

( 1

|t− s|

)]−1}
. (2.1)

Note that QGR(x0, t0) = {(x, t) ∈ Rn+1 : distpar,G((x, t), (x0, t0)) < R, t < t0} and
similarly for QR(x0, t0). Accordingly we define the parabolic distance between sets as

distpar(A,B) := inf
(x,t)∈A
(y,s)∈B

distpar

(
(x, t), (y, s)

)
for A,B ⊂ Rn+1; similarly for distpar,G(A,B).

At a certain point it will be useful to split Rn = Rn−1×R. We agree here that we shall
write a point x ∈ Rn as (x′, xn) ∈ Rn−1 ×R; moreover, with B′r(x

′
0) we shall denote the

ball of Rn−1 with radius r and center x′0 ∈ Rn−1.
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With B ⊂ R` being a measurable set, χB denotes its characteristic function. If further-
more B has positive and finite measure and f : B → Rk is a measurable map, we shall
denote by

(f)B ≡
∫
B
f(y) dy :=

1

|B|

∫
B
f(y) dy

the integral average of f over B. If B is a cylinder, B := K × Γ ⊂ Rn+1, then we shall
denote the slicewise average by

(f)K(τ) :=

∫
K

f(y, τ) dy.

for almost every τ ∈ Γ. By sup we shall mean possibly the essential supremum, and
similarly for inf . We shall also as usual denote

osc
B
f := sup

B
f − inf

B
f, [f ]C0,γ(B) := sup

x,y∈B
x6=y

|f(x)− f(y)|
|x− y|γ

.

Dif := ∂f/∂xi, for i ∈ {1, . . . , n}, will stand for the partial derivative of f in the êi
direction, and D2

i,jf will denote ∂2f/∂xi∂xj . Here êi is the i-th element of the standard
orthonormal basis of Rn. By 2∗ we shall denote the Sobolev conjugate exponent of 2, with
the agreement that in the case n = 2 we fix the value of 2∗ as 4, i.e.,

2∗ :=


2n

n− 2
n > 2,

4 n = 2.

(2.2)

With s being a real number, we shall denote s+ := max{s, 0} and s− := max{−s, 0}. For
a vector ξ = (ξ1, . . . , ξn) ∈ Rn, diag ξ denotes the diagonal matrix (ξiδi,j)

n
i,j=1. Finally,

R+ := [0,∞), N is the set {1, 2, . . . } and N0 = N ∪ {0}.
By “equation structurally similar to (1.8)1” we mean an equation of the type ∂tu −

div Ã(Du) = 0 with Ã satisfying assumptions (1.9) with ν, L and g replaced by ν̃, L̃ and
g̃. Both ν̃, L̃ will depend on data, while g̃ will satisfy (1.2) and (1.5) with g̃0, g̃0, c̃`
depending on data and c`.

2.2. Properties of g. Without loss of generality we assume that∫ 1

0

g(ρ) dρ = 1. (2.3)

Since (1.2) implies that the map r 7→ g(r)r−(g0−1) is increasing, while r 7→ g(r)r−(g1−1)

turns out to be decreasing, we have

min
{
αg0−1, αg1−1

}
g(r) ≤ g(αr) ≤ max

{
αg0−1, αg1−1

}
g(r)

for every r, α > 0; clearly g(0) = 0 and limr→∞ g(r) = ∞. Since moreover g is strictly
increasing, it has a strictly increasing inverse function g−1 ∈ C1(R+) with(

g−1
)′

(r) =
1

g′(g−1(r))
for every r > 0.

Using (1.2) we then see that also g−1 satisfies an Orlicz-type condition

1

g1 − 1
≤ (rg−1)′(r)

g−1(r)
≤ 1

g0 − 1
for every r > 0. (2.4)

Therefore, anything derived from (1.2) for g holds for g−1 with g0− 1 and g1− 1 replaced
by 1/(g1 − 1) and 1/(g0 − 1), respectively.

Define the function G : R+ → R+ as

G(r) :=

∫ r

0

g(ρ) dρ. (2.5)
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Clearly G′(r) = g(r) > 0 and G′′(r) = g′(r) > 0 implying that G is both strictly
increasing and strictly convex in (0,∞). Moreover, G(0) = 0 and G(1) = 1 due to
(2.3). We also define 1/G(1/s) = 1/G−1(1/s) = 0 for s = 0. It is simple to check by
integrating the function r 7→ rg(r) by parts and using (1.2) that also

g0 ≤
G′(r)r

G(r)
≤ g1 (2.6)

holds true for r > 0.
Define the Young complement of G as

G̃(r) = sup
s>0

(rs−G(s)) or G̃(r) :=

∫ r

0

g−1(ρ) dρ; (2.7)

in our setting these definitions are equivalent, see [33]. Note that the Young’s inequality

sr ≤ G(s) + G̃(r) (2.8)

holds true for every r, s > 0 and by (2.4) and the second definition in (2.7) also G̃ satisfies
an Orlicz-type condition

g1

g1 − 1
≤ G̃′(r)r

G̃(r)
≤ g0

g0 − 1
. (2.9)

Now starting from (2.6) and (2.9), we deduce precisely as for g the inequalities

min{αg0 , αg1}G(r) ≤ G(αr) ≤ max{αg0 , αg1}G(r), (2.10)

and

min
{
α

g1
g1−1 , α

g0
g0−1

}
G̃(r) ≤ G̃(αr) ≤ max

{
α

g1
g1−1 , α

g0
g0−1

}
G̃(r)

for every α, r ≥ 0. These, together with Young’s inequality (2.8), imply for 0 < ε < 1

sr ≤ G(ε
1
g0 s) + G̃(ε−

1
g0 r) ≤ εG(s) + c(g0, ε)G̃(r).

Another useful property is

G̃
(G(r)

r

)
≤ G(r) for every r > 0,

see again [33] for the easy proof.
From the second assumption of (1.9) we easily derive an upper bound for A. Indeed,

when ξ ∈ Rn \ {0} we have

|A(ξ)| ≤ |ξ|
∫ 1

0

|DA(sξ)| ds ≤ L|ξ|
∫ 1

0

g(s|ξ|)
s|ξ|

ds

≤ c(L, g0)

∫ |ξ|
0

g′(r) dr ≤ c(g0, g1, L)
G(|ξ|)
|ξ|

; (2.11)

this holds also for ξ = 0 by our conventions, since A(0) = 0. Similarly, the first assump-
tion of (1.9) yields

〈A(ξ), ξ〉 =

∫ 1

0

〈DA(sξ)ξ, ξ〉 ds ≥ c(g1, ν)|ξ|
∫ |ξ|

0

g′(r) dr ≥ c(g0, g1, ν)G(|ξ|).
(2.12)

We define the quantity Vg : Rn → Rn by

Vg(ξ) =

(
g(|ξ|)
|ξ|

) 1
2

ξ
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when ξ 6= 0 and set Vg(0) = 0. Clearly Vg is a continuous bijection of Rn and, moreover,
has a continuous inverse by the inverse function theorem. Furthermore, the following
monotonicity formula holds true:

〈A(ξ1)−A(ξ2), ξ1 − ξ2〉 ≥ c
g(|ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|2 ≥ c |Vg(ξ1)− Vg(ξ2)|2 (2.13)

for a constant c ≡ c(g0, g1, ν) and for every ξ1, ξ2 ∈ Rn, see [16, 17].

2.3. A concrete example. We give here a nontrivial example of a Lipschitz function g
satisfying our assumptions - see Remark 1. This example is inspired by [28]. In particular
we want to demonstrate the possibility that g oscillates between degenerate and singular
behaviour. Suppose 2n/(n + 2) < g0 < g1 and set δ = (g1 − g0)/3 > 0. Define the
sequence sk = 22k for k ∈ N0 and the function

g(s) =


sg0−1+δ, 0 < s < 2

s−δ2k+1s
g1−1, s2k ≤ s < s2k+1

sδ2k+2s
g0−1, s2k+1 ≤ s < s2k+2

.

Clearly g is Lipschitz and it satisfies (1.2). Moreover, (2.3) holds after scaling by a suitable
normalization constant. We observe that

lim sup
s→∞

g(s)

s
=


∞, g1 > 2 + δ (iff g0 + 2g1 > 6)
1, g1 = 2 + δ (iff g0 + 2g1 = 6)
0, g1 < 2 + δ (iff g0 + 2g1 < 6)

,

lim inf
s→∞

g(s)

s
=


∞, g0 > 2− δ (iff 2g0 + g1 > 6)
1, g0 = 2− δ (iff 2g0 + g1 = 6)
0, g0 < 2− δ (iff 2g0 + g1 < 6)

.

By taking g0 = 2 − 3
2n , g1 = 2 + 3

2n we obtain a particularly interesting case, that is, we
have lim infs→∞ g(s)/s = 0 but lim sups→∞ g(s)/s = ∞. Furthermore, if we consider
the function

g̃(s) =
1

g(1/s)
,

we find similar behaviour as s→ 0. This is to say, we can build a structure function g (and
accordingly a vector field A as in (1.1)) that, for ` ∈ N, along the sequence {`−k}k∈N0 the
function g(s)/s is at the same time as large and as close to zero as we wish, and therefore
it does not enjoy any monotonicity properties. This gives a clue about the difficulty of
the application of De Giorgi-type methods, in particular when they have to be matched
with intrinsic geometries: note that the expressions of the type G(s)/s2 ≈ g(s)/s appear
already in the energy estimate for (1.1), see Lemma 2.3. On the other hand, when the
quantity g(|Du|)/|Du| is known to be under control, then the equation becomes treatable,
see for instance Proposition 3.4 and in particular (3.8).

2.4. Orlicz spaces. For G as in (2.5), a measurable function u : A→ R, A ⊂ Rk, k ∈ N
belongs to the Orlicz space LG(A) if it satisfies∫

A

G(|u|) dx <∞.

The space LG(A) is a vector space, since G satisfies the ∆2-condition (2.10), and it can be
shown to be a Banach space if endowed with the Luxemburg norm

‖u‖LG(A) := inf

{
λ > 0 :

∫
A

G
( |u|
λ

)
dx ≤ 1

}
.
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A function u belongs to LGloc(A), if u ∈ LG(A′) for every A′ b A. If also the weak
gradient of u belongs to LG(A), we say that u ∈W 1,G(A). The corresponding space with
zero boundary values, denoted W 1,G

0 (A), is the completion of C∞c (A) under the norm

‖u‖W 1,G(A) := ‖u‖LG(A) + ‖Du‖LG(A).

We denote by V G(ΩT ) the space of functions u ∈ LG(ΩT ) ∩ L1(0, T ;W 1,1(Ω)) for
which also the weak spatial gradient Du belongs to LG(ΩT ). The space V G(ΩT ) is also
a Banach space with the norm

‖u‖V G(ΩT ) := ‖u‖LG(ΩT ) + ‖Du‖LG(ΩT ).

Moreover, we denote by V G0 (ΩT ) the space of functions u ∈ V G(ΩT ) that belong to
W 1,G

0 (Ω) for almost every t ∈ (0, T ), while the localized version V Gloc(ΩT ) is defined, as
above, in the customary way. We also shorten

V 2,G(ΩT ) := L∞
(
0, T ;L2(Ω)

)
∩ V G(ΩT )

and similarly for the localized and the zero trace versions. We shall moreover denote
V 2,p(ΩT ), for p > 1, the space V 2,G(ΩT ) for the choice G(s) = sp.

2.5. The concept of solution and consequences. We fix here the notions of solution em-
ployed in this paper.

Definition 1. A function u is a weak solution to (1.8)1 in a cylindrical domain K ⊂ Rn+1,
with the vector fieldA satisfying the assumptions (1.9), if u ∈ V 2,G

loc (K) and it satisfies the
weak formulation ∫

K

[
− u∂tη + 〈A(Du), Dη〉

]
dx dt = 0 (2.14)

for every test function η ∈ C∞c (K). If instead of equality we have the≤ (≥) sign for every
nonnegative η ∈ C∞c (K), we say that u is a weak subsolution (supersolution) in K.

Definition 2. A function u is a solution to the Cauchy-Dirichlet problem (1.8) if u ∈
C0(ΩT ) is a weak solution to (1.8)1 in ΩT and moreover u = ψ pointwise on ∂pΩT .

A very useful formulation, equivalent to (2.14), is the one involving Steklov averages.
Indeed, the mild regularity of a solution does not allow us to use it as a test function.
Furthermore, it is sometimes useful to have a weak formulation allowing for test functions
independent of time, or test functions possibly vanishing only on the parabolic boundary
of a cylinder. Apart from mollification, the possible way to have such properties involve
the so-called Steklov averaging regularization of a function: for f : K = D× (t1, t2)→ R
measurable and 0 < |h| � 1 appropriate, it is defined as

fh(x, t) :=
1

h

∫ t

t−h
f(x, s) ds for (x, t) ∈ D × (t1 + h, t2);

note that we employ the backward regularization. If f ∈ Lq(K) for some q ≥ 1, then
fh → f inLq(D×(t1+ε, t2)) for every ε > 0; the same holds in theLG spaces. Moreover,
if f ∈ C0(t1, t2;Lq(D)) then fh(·, τ)→ f(·, τ) in Lq(D) for a.e. τ ∈ (t1 + ε, t2) and for
every ε > 0.

At this point it is quite easy to infer the following slicewise formulation for weak solu-
tions (see [14]) using density arguments with respect to the spatial variable:∫

D

[
∂tuh(·, τ)η +

〈
[A(Du)]h(·, τ), Dη

〉]
dx = 0 (2.15)

for every η ∈ W 1,G
0 (D), almost every τ ∈ (t1 + h, t2), and h > 0 such that the functions

are well defined. Similar results hold also for weak super- and subsolutions.
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Proposition 2.1. (Comparison principle) LetK := D×(t1, t2) ⊂ ΩT and let u ∈ C0(Kp)
be a weak subsolution to (1.8)1 and v ∈ C0(Kp) a weak supersolution to (1.8)1 in K. If
u ≤ v on ∂pK, then u ≤ v in Kp.

Proof. For ε > 0 fixed define ϕε(t) := (t2 − ε− t)+ and test (2.14) formally with

η = (uh − vh − ε)+ϕε.

Note that η is compactly supported in K due to the continuity of u and v and the fact that
u ≤ v on ∂pQ. Subtracting the Steklov version of the variational inequality of v from that
of u and integrating over (t1, t2) yields∫

K
∂t(uh − vh)η dx dt+

∫
K
〈[A(Du)]h − [A(Dv)]h, Dη〉 dx dt ≤ 0.

By the monotonicity of A, Lemma 2.13, we have∫
K
〈[A(Du)]h − [A(Dv)]h, Dη〉 dx dt

→
∫
K∩{u>v+ε}

〈A(Du)−A(Dv), Du−Dv)〉ϕε dx dt ≥ 0,

and for the parabolic term we obtain using integration by parts∫
K
∂t(uh − vh)(uh − vh − ε)+ϕε dx dt = −1

2

∫
K

(uh − vh − ε)2
+∂tϕε dx dt

→ 1

2

∫ t2−ε

t1

∫
D

(u− v − ε)2
+ dx dt

as h→ 0. Combining these gives∫ t2−ε

t1

∫
D

(u− v − ε)2
+ dx dt ≤ 0,

which implies u ≤ v+ ε almost everywhere in D× (t1, t2− ε). Since this holds for every
ε > 0 and u, v ∈ C(Q), the result follows. �

Observe that the uniqueness of a solution to the Cauchy-Dirichlet problem (1.8) follows
immediately from the previous result. Moreover, we have the following corollary.

Corollary 2.2. (Maximum principle) Let K ⊂ ΩT and let u ∈ C(Kp) be a weak solution
to (1.8)1 in K. Then

inf
∂pK

u ≤ u ≤ sup
∂pK

u

in Kp and, moreover,
sup
K
|u| = sup

∂pK
|u|.

We recall the following standard energy inequality for local weak solutions. We give it
in a more general form for future reference.

Lemma 2.3 (Caccioppoli’s inequality). Let K := D × (t1, t2) b ΩT and let u be a weak
solution to (1.8) in K. Then there exists a constant c ≡ c(g0, g1, ν, L) such that

sup
τ∈(t1,t2)

∫
D

[
(u− k)2

±ϕ
g1
]
(·, τ) dx+

∫
K
G
(
|D(u− k)±|

)
ϕg1 dx dt

≤
∫
D

[
(u− k)2

±ϕ
g1
]
(·, t1) dx+ c

∫
K

[
G
(
|Dϕ|(u− k)±

)
+ (u− k)2

±|∂tϕ|
]
dx dt

for any k ∈ R and for every ϕ ∈ W 1,∞(K) vanishing in a neighborhood of ∂D × (t1, t2)
and with 0 ≤ ϕ ≤ 1. The same inequality but only with the “+” sign holds for weak
subsolutions.



THE CAUCHY-DIRICHLET PROBLEM FOR A CLASS OF PARABOLIC EQUATIONS 11

Proof. Fix ϕ ∈ W 1,∞(K) as in the statement of the Lemma, call w := ±(u − k)±
and choose η = whϕ

g1 as the test function in (2.15). Then we integrate over (t1, τ) for
τ ∈ (t1, t2) to obtain∫

K
∂tuh whϕ

g1χ(t1,τ) dx dt+

∫
K

〈
[A(Du)]h, D(whϕ

g1)
〉
χ(t1,τ) dx dt = 0. (2.16)

Integration by parts gives∫
K
∂tuh whϕ

g1χ(t1,τ) dx dt =
1

2

∫ τ

t1

∫
D
∂t(w

2
h)ϕg1 dx dt (2.17)

=
1

2

∫
D
w2
hϕ

g1 dx

∣∣∣∣τ
t=t1

− 1

2

∫ τ

t1

∫
D
w2
h∂t(ϕ

g1) dx dt

→ 1

2

∫
D
w2ϕg1 dx

∣∣∣∣τ
t=t1

− 1

2

∫ τ

t1

∫
D
w2∂t(ϕ

g1) dx dt

as h→ 0. For the elliptic part we have by (2.12)∫
K

〈
[A(Du)]h, D(whϕ

g1)
〉
χ(t1,τ) dx dt

→
∫ τ

t1

∫
D

〈
A(Du), Dw

〉
ϕg1 dx dt+ g1

∫ τ

t1

∫
D

〈
A(Du), Dϕ

〉
wϕg1−1 dx dt

≥ c1
∫ τ

t1

∫
D
G(|Dw|)ϕg1 dx dt−

∣∣∣∣g1

∫
K

〈
A(Du), Dϕ

〉
wϕg1−1 dx dt

∣∣∣∣,
where c1 depends on g0, g1, ν. Furthermore, by (2.11), Young’s inequality with ε ∈ (0, 1)
to be chosen and the properties of g we obtain∣∣∣∣g1

∫
K

〈
A(Du), Dϕ

〉
wϕg1−1 dx dt

∣∣∣∣ ≤ g1

∫
K
|A(Dw)||Dϕ||w|ϕg1−1 dx dt

≤ εc2
∫
K
G̃

(
G(|Dw|)
|Dw|

ϕg1−1

)
dx dt+ c(ε)

∫
K
G(|Dϕ||w|) dx dt

≤ εc2
∫
K
G(|Dw|)ϕg1 dx dt+ c(ε)

∫
K
G(|Dϕ||w|) dx dt, (2.18)

where c2 depends on g0, g1, L and c(ε) depends on g0, g1, L as well as on ε. Now, com-
bining (2.17)-(2.18) with (2.16) yields

1

2

∫
D
w2ϕg1 dx

∣∣∣∣τ
t=t1

− 1

2

∫
K
w2∂t(ϕ

g1) dx dt+ c1

∫ τ

t1

∫
D
G(|Dw|)ϕg1 dx dt

≤ εc2
∫
K
G(|Dw|)ϕg1 dx dt+ c(ε)

∫
K
G(|Dϕ||w|) dx dt.

We conclude by taking the essential supremum with respect to τ ∈ (t1, t2), choosing
ε ∈ (0, 1) such that εc2 ≤ c1/2, reabsorbing the term on the right-hand side and recalling
the definition of w.

The proof for subsolutions is very similar, taking into account that the test function η
must be nonnegative. �

2.6. The geometry of the problem. In order to understand the equation, the first thing
we want to stress is its scaling. Suppose u solves the model equation (1.1) in Q1 =
B1 × (−1, 0) and let κ > 0. Then the function

ū(x, t) := κu
(x− x0

r
,

1

κ2
G
(κ
r

)
(t− t0)

)
solves in

Qκr (x0, t0) := Br(x0)×
(
t0 − κ2

[
G
(κ
r

)]−1

, t0

)
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the equation

ūt − div
( ḡ(|Dū|)
|Dū|

Dū
)

= 0, (2.19)

where

ḡ(s) :=
κ

r

[
G
(κ
r

)]−1

g
(κ
r
s
)
. (2.20)

The function ḡ has the same structure as g, in the sense that it satisfies (1.2) exactly with
parameters g0 and g1 and moreover, we have G(1) = 1, where

G(s) :=

∫ s

0

ḡ(σ) dσ =
[
G
(κ
r

)]−1

G
(κ
r
s
)
.

Conversely, if we have a solution w to (1.8) in Qκr , then

w̄(x, t) :=
1

κ
w
(
x0 + rx, t0 + κ2

[
G
(κ
r

)]−1

t
)

solves (2.19) in Q1 with ḡ as in (2.20). In case we consider the general equation (1.8), the
same scaling argument holds if we consider the vector field

A(ξ) :=
κ

r

[
G
(κ
r

)]−1

A
(κ
r
ξ
)

which satisfies the structural conditions (1.9) with g replaced by the function ḡ.

2.7. Other auxiliary results. The following Lemma encodes the self-improving property
of reverse Hölder inequalities. We take the form proposed in [27, Lemma 5.1] with slight
changes in order to meet our purposes.

Lemma 2.4. Let µ be a nonnegative Borel measure with finite total mass. Moreover, let
γ > 1 and {σQ}0<σ≤1 be a family of open sets with the property

σ′Q ⊂ σQ ⊂ 1Q = Q

whenever 0 < σ′ < σ ≤ 1. If w ∈ L2(Q) is a nonnegative function satisfying(∫
σ′Q

w2γ dµ

)1/(2γ)

≤ c0
σ − σ′

(∫
σQ

w2 dµ

)1/2

for all 1/2 ≤ σ′ < σ ≤ 1, then for any 0 < q < 2 there is a positive constant c ≡
c(c0, γ, q) such that(∫

σQ
w2γ dµ

)1/(2γ)

≤ c

(1− σ)ξ

(∫
Q
wq dµ

)1/q

,

for all 0 < σ < 1, where ξ := 2γ−q
q(γ−1) .

The next one is a classic iteration Lemma.

Lemma 2.5. Let φ : [R, 2R]→ [0,∞) be a function such that

φ(r) ≤ 1

2
φ(s) +

A

(s− r)β
+B for every R ≤ r < s ≤ 2R,

where A,B ≥ 1 and β > 0. Then

φ(R) ≤ c(β)

[
A

Rβ
+B

]
.
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3. A PRIORI LIPSCHITZ ESTIMATES

In this section we impose on u an additional regularity assumption and prove intrinsic
estimates for the gradient of u. To be precise, we shall suppose

u,Du ∈ C0
loc(ΩT ), u ∈ L2

loc(0, T ;W 2,2
loc (Ω)). (3.1)

This is to say, we shall prove the estimates of this section as a priori estimates, leaving
to Section 4 the approximation procedure which will explain how to deduce the desired
estimates without the additional assumption (3.1). Notice that the continuity of u and Du
allows us to treat their pointwise values. Due to the assumed extra regularity it will be
possible to differentiate the equation; this will be done by showing that the function

v := |Du|2 (3.2)

is a subsolution to a similar equation.

Lemma 3.1. Let u be a weak solution to (1.8)1 in ΩT and, moreover, assume that the
regularity assumptions (3.1) hold. Then v is a weak subsolution to

∂tv − div(DA(Du)Dv) = 0 in ΩT . (3.3)

Proof. Formally, the idea is to differentiate equation (1.8)1 with respect to xj for j =
1, . . . , n, then multiply byDju, and finally sum over j. To this end, let 0 ≤ ϕ ∈ C∞c (ΩT ),
and test (2.14) with

η = −Dj(Djuϕ).

This choice can be justified by using Steklov averages, as done previously in the paper; we
shall proceed formally. Integration by parts yields

0 = −
∫

ΩT

u ∂t(−Dj(Djuϕ)) dx dt+

∫
ΩT

〈A(Du), D(−Dj(Djuϕ))〉 dx dt

=

∫
ΩT

∂t(Dju)Djuϕdx dt+

∫
ΩT

〈DjA(Du), D(Djuϕ)〉 dx dt

= −1

2

∫
ΩT

|Dju|2∂tϕdx dt+
1

2

∫
ΩT

〈DA(Du)D
(
|Dju|2

)
, Dϕ〉 dx dt

+

∫
ΩT

〈DA(Du)DDju,DDju〉ϕdx dt.

Now, since∫
ΩT

〈DA(Du)DDju,DDju〉ϕdx dt ≥ ν
∫

ΩT

g(|Du|)
|Du|

|DDju|2ϕdx dt ≥ 0

by (1.9)1, summing up over j = 1, . . . , n leads to

−
∫

ΩT

|Du|2∂tϕdx dt+

∫
ΩT

〈DA(Du)D|Du|2, Dϕ〉 dx dt ≤ 0.

This proves the claim. �

Next we prove a Caccioppoli inequality of porous medium type for the function v.

Lemma 3.2. Let u be a weak solution of (1.8) in ΩT and assume that (3.1) holds. Let
K := D × (t1, t2) b ΩT and k ∈ R. Then there exists a constant c ≡ c(ν, L) such that

sup
τ∈(t1,t2)

∫
D

[(v − k)2
+ϕ

2](·, τ) dx+

∫
K

g(|Du|)
|Du|

|D(v − k)+|2ϕ2 dx dt

≤ c
∫
K

(v − k)2
+

(
g(|Du|)
|Du|

|Dϕ|2 + |∂tϕ|
)
dx dt

for every ϕ ∈ C∞(K) vanishing in a neighborhood of ∂pK.



14 PAOLO BARONI AND CASIMIR LINDFORS

Proof. We can take
η = (v − k)+ϕ

2χ(t1,τ)

for τ ∈ (t1, t2) as the test function in the weak formulation of (3.3), up to a regularization
similar to the previous ones. For the parabolic part we have

−
∫ τ

t1

∫
D
v ∂t
(
(v − k)+ϕ

2
)
dx dt =

1

2

∫ τ

t1

∫
D
∂t(v − k)2

+ϕ
2 dx dt

=
1

2

∫
D

[(v − k)2
+ϕ

2](·, τ) dx− 1

2

∫ τ

t1

∫
D

(v − k)2
+∂tϕ

2 dx dt.

The elliptic term can be estimated from below by using the assumptions (1.9) and Young’s
inequality with ε = ν/(2L). This gives∫ τ

t1

∫
D

〈
DA(Du)Dv,D

(
(v − k)+ϕ

2
)〉
dx dt

=

∫ τ

t1

∫
D
〈DA(Du)D(v − k)+, D(v − k)+〉ϕ2 dx dt

+ 2

∫ τ

t1

∫
D
〈DA(Du)D(v − k)+, Dϕ〉 (v − k)+ϕdx dt

≥ ν
∫ τ

t1

∫
D

g(|Du|)
|Du|

|D(v − k)+|2ϕ2 dx dt

− 2L

∫ τ

t1

∫
D

g(|Du|)
|Du|

|D(v − k)+||Dϕ| (v − k)+ϕdx dt

≥ ν

2

∫ τ

t1

∫
D

g(|Du|)
|Du|

|D(v − k)+|2ϕ2 dx dt

− c(ν, L)

∫ τ

t1

∫
D

g(|Du|)
|Du|

|Dϕ|2 (v − k)2
+ dx dt,

and thus, we obtain∫
D

[(v − k)2
+ϕ

2](·, τ) dx+ ν

∫ τ

t1

∫
D

g(|Du|)
|Du|

|D(v − k)+|2ϕ2 dx dt

≤ c
∫
K

g(|Du|)
|Du|

|Dϕ|2 (v − k)2
+ dx dt+

∫
K

(v − k)2
+|∂tϕ| dx dt.

Since τ ∈ (t1, t2) was arbitrary, the result follows. �

Combining the previous lemma with Sobolev’s inequality leads to the following esti-
mate.

Lemma 3.3. Let the assumptions of Lemma 3.2 be in force. Then there exists a constant
c ≡ c(n, g1, ν, L) such that∫

K

g(|Du|)
|Du|

(v − k)2γ
+ ϕ2γ dx dt

≤ c |D|2/n(t2 − t1)γ−1

(∫
K

(v − k)2
+

(
g(|Du|)
|Du|

|Dϕ|2 + |∂tϕ|
)
dx dt

)γ
, (3.4)

where - recall (2.2) -

γ := 2− 2

2∗
> 1.

Proof. By Hölder’s and Sobolev’s inequalities we have∫
K

g(|Du|)
|Du|

(v − k)2γ
+ ϕ2γ dx dt
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=
1

t2 − t1

∫ t2

t1

∫
D

g(|Du|)
|Du|

(v − k)2
+ϕ

2
(
(v − k)2

+ϕ
2
)1−2/2∗

dx dt

≤ 1

t2 − t1

∫ t2

t1

(∫
D

((g(|Du|)
|Du|

)1/2

(v − k)+ϕ

)2∗

dx

)2/2∗

×
(∫
D

(v − k)2
+ϕ

2 dx

)1−2/2∗

dt

≤ c(n)|D|2/n
(

sup
τ∈(t1,t2)

∫
D

[(v − k)2
+ϕ

2](·, τ) dx

)1−2/2∗

×
∫
K

∣∣∣∣D((g(|Du|)
|Du|

)1/2

(v − k)+ϕ

)∣∣∣∣2 dx dt. (3.5)

A straightforward calculation yields∣∣∣∣D((g(|Du|)
|Du|

)1/2

(v − k)+ϕ

)∣∣∣∣2
=

∣∣∣∣[ (v − k)+

4v

(
|Du|g′(|Du|)
g(|Du|)

− 1

)
+ 1

](g(|Du|)
|Du|

)1/2

D(v − k)+ϕ

+
(g(|Du|)
|Du|

)1/2

(v − k)+Dϕ

∣∣∣∣2
≤ c(g1)

g(|Du|)
|Du|

|D(v − k)+|2ϕ2 + 2
g(|Du|)
|Du|

(v − k)2
+|Dϕ|2,

and thus, integrating and estimating the first term using Lemma 3.2 yields∫
K

∣∣∣∣D((g(|Du|)
|Du|

) 1
2

(v − k)+ϕ

)∣∣∣∣2 dx dt
≤ c

∫
K

(v − k)2
+

(
g(|Du|)
|Du|

|Dϕ|2 + |∂tϕ|
)
dx dt,

where the constant c depends only on g1, ν, and L. From Lemma 3.2 it also follows that

sup
τ∈(t1,t2)

∫
D

[(v − k)2
+ϕ

2](·, τ) dx

≤ c (t2 − t1)

∫
K

(v − k)2
+

(
g(|Du|)
|Du|

|Dϕ|2 + |∂tϕ|
)
dx dt;

therefore, by inserting the previous two inequalities into (3.5) we obtain (3.4). �

Next the aim is to prove an intrinsic reverse Hölder’s inequality. To this end, let
Qρ(x0, t0) ⊂ ΩT , let λ ≥ 1 be such that

λ ≥ 1

4
sup

Qρ(x0,t0)

|Du|, (3.6)

and set

θλ :=
g(λ)

λ
.

We introduce the intrinsic cylinder

Qλρ ≡ Qλρ(x0, t0) := min{1, θλ}1/2Bρ(x0)×
(
t0 −min{1, θ−1

λ }ρ
2, t0

)
. (3.7)
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Note that we have the alternative expression

Qλρ =


Bρ(x0)×

(
t0 − θ−1

λ ρ2, t0
)
, θλ ≥ 1

θ
1/2
λ Bρ(x0)×

(
t0 − ρ2, t0

)
, 0 < θλ < 1,

from which we easily see the analogy with the intrinsic geometry used to handle the par-
abolic p-Laplacian, recalling that in this case g(s)/s = sp−2 and λ is “dimensionally
comparable” to |Du|. Observe that we clearly have Qλρ(x0, t0) ⊂ Qρ(x0, t0) in any case.

Lemma 3.4. Let u be a weak solution to (1.8)1 in ΩT , assume that (3.1) and (3.6) hold
and let q > 0. Then there exists a constant c ≡ c(n, g1, ν, L, q) such that(∫

Qλ
ρ/2

(v − k)2γ
+ dx dt

)1/(2γ)

≤ c
(∫

Qλρ

(v − k)q+ dx dt

)1/q

for every k ≥ λ2.

Proof. Let 1/2 ≤ σ′ < σ ≤ 1 and choose a cut-off function ϕ ∈ C∞(σQλρ) vanishing in
the neighborhood of ∂p(σQλρ) such that 0 ≤ ϕ ≤ 1, ϕ = 1 in σ′Qλρ , and

|Dϕ| ≤ c

ρ(σ − σ′)
min

{
1, θλ

}−1/2
, |∂tϕ| ≤

c

ρ2(σ − σ′)2
min

{
1, θ−1

λ

}−1
.

Observe that by the inclusion Qλρ(x0, t0) ⊂ Qρ(x0, t0) and (3.6) we have

|Du| ≤ 4λ in Qλρ .

Moreover, we have |Du| ≥ λ in the support of (v − k)+, since k ≥ λ2 and v = |Du|2.
Thus, by using the properties of g we obtain

1

4
θλ ≤

g(|Du|)
|Du|

≤ c(g1)θλ (3.8)

in Qλρ ∩ {v ≥ k}. Now Lemma 3.3 yields∫
σ′Qλρ

(v − k)2γ
+ dx dt ≤ c(n) θ−1

λ

∫
σQλρ

g(|Du|)
|Du|

(v − k)2γ
+ ϕ2γ dx dt

≤ c θ−1
λ

∣∣∣min{1, θλ}1/2Bσρ
∣∣∣2/n(min{1, θ−1

λ }(σρ)2
)γ−1

×
(∫

σQλρ

(v − k)2
+

(
g(|Du|)
|Du|

|Dϕ|2 + |∂tϕ|
)
dx dt

)γ
≤ c θ−1

λ min{1, θλ}min{1, θ−1
λ }

γ−1ρ2γ

×
(
θλ min{1, θλ}−1 + min{1, θ−1

λ }−1

ρ2(σ − σ′)2

∫
σQλρ

(v − k)2
+ dx dt

)γ
=

c

(σ − σ′)2γ

(∫
σQλρ

(v − k)2
+ dx dt

)γ
.

This is to say(∫
σ′Qλρ

(v − k)2γ
+ dx dt

)1/(2γ)

≤ c

σ − σ′

(∫
σQλρ

(v − k)2
+ dx dt

)1/2

,

where the constant c depends only on n, g1, ν, L.
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Next we use Lemma 2.4 with w = (v − k)+ and dµ = 1
|Qλρ |

dx dt. This gives for every
0 < q < 2 a constant c ≡ c(n, g1, ν, L, q) such that(∫

Qλ
ρ/2

(v − k)2γ
+ dx dt

)1/(2γ)

≤ c
(∫

Qλρ

(v − k)q+ dx dt

)1/q

;

the case q ≥ 2 now follows from Hölder’s inequality. �

Iterating the previous result yields the following pointwise estimate.

Proposition 3.5. Let u be a weak solution to (1.8) in ΩT and assume that (3.1) holds.
Then for every q > 0 there exists a constant c ≡ c(n, g1, ν, L, q) such that

|Du(x0, t0)| ≤ λ+ c

(∫
Qλρ (x0,t0)

(
|Du|2 − λ2

)q
+
dx dt

)1/(2q)

holds for every λ satisfying (3.6).

Proof. The idea is to apply De Giorgi’s iteration method with the aid of Lemma 3.4. Let
us first consider the case 0 < q < 2. To this end, choose for j ∈ N0

ρj = 2−jρ, kj = λ2 + (1− 2−j)d,

where d > 0 is to be determined later. Observe that ρ0 = ρ, k0 = λ2, and ρj decreases
to zero and kj increases to λ2 + d as j tends to infinity; clearly kj ≥ λ2. Denote Qj :=
Qλρj (x0, t0) and

Yj :=

(∫
Qj

(v − kj)q+ dx dt
)1/q

for j ∈ N0.

By Lemma 3.4 we have(∫
Qj+1

(v − kj)2γ
+ dx dt

)1/(2γ)

≤ c
(∫

Qj

(v − kj)q+ dx dt
)1/q

,

and since kj+1 > kj implies

(v − kj)2γ
+ ≥ (kj+1 − kj)2γ−q(v − kj+1)q+χ{v≥kj+1},

we obtain

Yj+1 ≤
c

(kj+1 − kj)β

(∫
Qj+1

(v − kj)2γ
+ dx dt

)2γ/q

≤ c∗d−β2βjY 1+β
j ,

for every j ∈ N0, where β := 2γ/q − 1 > 0 and c∗ ≡ c∗(n, g1, ν, L, q). Then a standard
hyper-geometric iteration lemma implies Yj → 0 as j →∞, provided that

Y0 ≤ (2c∗)−
1
β d

and this can be guaranteed by choosing

d = (2c∗)
1
β

(∫
Qλρ (x0,t0)

(
v − λ2

)q
+
dx dt

)1/q

.

Now Lebesgue’s differentiation theorem yields(
v(x0, t0)−

(
λ2 + d

))
+

= lim
j→∞

(∫
Qj

(
v −

(
λ2 + d

))q
+
dx dt

)1/q

≤ lim
j→∞

Yj = 0,

which implies, recalling the choice of d,

v(x0, t0) ≤ λ2 + c

(∫
Qλρ (x0,t0)

(
v − λ2

)q
+
dx dt

)1/q

.

The case q ≥ 2 follows again by Hölder’s inequality. �
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4. APPROXIMATION

In this section we regularize the equation in order to apply the results of the previous
section and show that the gradient of the solution to the regularized equation is uniformly
bounded. Then all we have left to prove is that the approximating solutions converge to a
function that solves the original equation.

To this end, define for ε ∈ (0, 1)

Aε(ξ) := (φε ∗ A)(ξ) + ε
(
1 + |ξ|

)g̃1−2
ξ, (4.1)

where φε(ξ) = φ(ξ/ε)/εn; φ is a standard mollifier with
∫
Rn φdx = 1. That is, we

mollify the vector field A and perturb it with the nondegenerate g̃1-Laplacian, where g̃1 >
max{g1, 2}; we can take for example g̃1 := g1 + 1. It is straightforward to see that Aε
satisfies (1.9) with g replaced by

gε(s) :=
g(s+ ε)

s+ ε
s+ ε(1 + s)g̃1−2s (4.2)

and L, ν replaced by L̃ = c(n, g1)L, ν̃ = ν/c(n, g1), see also Paragraph 6.1. Now the key
point is that Ogε can be bounded independently of ε. Indeed, we have

g̃0 − 1 ≤ Ogε(s) ≤ g̃1 − 1,

where g̃0 := min{g0, 2}. Note that gε also satisfies the lower bound in (1.5), since gε(s) ≥
g(s)/2 for s ≥ 1.

Let uε ∈ V 2,g̃1(ΩT ) ∩ C0(ΩT ) be the solution to the Cauchy-Dirichlet problem{
∂tuε − divAε(Duε) = 0 in ΩT ,

uε = ψ on ∂pΩT ;
(4.3)

for existence and uniqueness of such solutions see for instance [24]. Since

ε(1 + s)g̃1−2 ≤ gε(s)

s
≤ c(g1)

ε
(1 + s)g̃1−2,

in addition to satisfying gε-ellipticity and -growth conditions analogous to (1.9), the vector
fieldAε also enjoys nondegenerate p-Laplacian growth conditions with p = g̃1. Hence, by
standard theory, uε satisfies the assumption (3.1), see [14, 27]; therefore the results of the
previous section are at our disposal for u ≡ uε. Note that all the constants will turn out to
be effectively independent of ε.

Let us then show how to apply the result of the previous section in order to locally
bound the gradient of the approximating solution uniformly in terms of ε. Here we also
prove an estimate that, once convergence is established, leads to (1.10). Observe that the
assumption (1.5) is crucial in this proof. We shall shorten ‖ψ‖L∞ ≡ ‖ψ‖L∞(∂pΩT ).

Proposition 4.1. Let uε be a solution to (4.3) and let K b ΩT . Then ‖Duε‖L∞(K)

is bounded by a constant depending on data, ε, c`, ‖ψ‖L∞ , and distpar(∂pΩT ,K), but
independent of ε.

Proof. Let us consider a standard parabolic cylinder Q4R ≡ Q4R(x∗, t∗) ⊂ ΩT and a
subcylinder Qρ(x0, t0) ⊂ Q2R. Moreover, let λ ≥ 1 be such that

λ ≥ 1

4
sup

Qρ(x0,t0)

|Duε|. (4.4)

We divide the proof into two cases depending on which term of gε dominates at λ.
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Case I. Assume
g(λ+ ε)

λ+ ε
≤ ε(1 + λ)g̃1−2.

Setting

θελ :=
gε(λ)

λ
=
g(λ+ ε)

λ+ ε
+ ε(1 + λ)g̃1−2

we clearly have

ε(1 + λ)g̃1−2 ≤ θελ ≤ 2ε(1 + λ)g̃1−2. (4.5)

By applying Proposition 3.5 to uε with q = g̃1/2 we obtain

|Duε(x0, t0)| ≤ λ+ c

(∫
Qλρ (x0,t0)

(
|Duε|2 − λ2

)g̃1/2

+
dx dt

)1/g̃1

≤ λ+ c

(
max{1, θελ}

min{1, θελ}n/2

∫
Qρ(x0,t0)

|Duε|g̃1 dx dt

)1/g̃1

,

since Qλρ(x0, t0) ⊂ Qρ(x0, t0).
We further distinguish two cases: in the case when θελ ≥ 1 we get

max{1, θελ}
min{1, θελ}n/2

= θελ ≤ 2ε(1 + λ)g̃1−2,

while when 0 < θελ < 1 we have

max{1, θελ}
min{1, θελ}n/2

= (θελ)−n/2 ≤
(
ε(1 + λ)g̃1−2

)−n/2
= ε
(
ε1+2/n(1 + λ)g̃1−2

)−n/2
;

(4.6)
in both cases we have used (4.5). Since

ε ≥ g(λ+ ε)

(1 + λ)g̃1−2(λ+ ε)

≥ c`
(
λ+ ε

)n−2
n+2 +ε−1(

1 + λ
)2−g̃1

≥ c`
(
1 + λ

)2−g̃1+min{ε−4/(n+2),0}
=: c`

(
1 + λ

)η̄
by (1.5) and the fact that λ ≥ 1, plugging this estimate into (4.6) yields(

ε1+2/n
(
1 + λ

)g̃1−2
)−n/2

≤ c(n, c`)
(
1 + λ

)−(η̄(1+2/n)+g̃1−2)n/2

≤ c(n, c`)
(
1 + λ

)g̃1−min{ε(n+2)/2,2}
;

a direct computation shows indeed the relation between the exponents. Hence we have

|Duε(x0, t0)| ≤ λ+ c
(
1 + λ

)1−min{ε(n+2)/(2g̃1),2/g̃1}

×
(
ε

∫
Qρ(x0,t0)

|Duε|g̃1 dx dt

)1/g̃1

≤ 2λ+ c

(
ε

∫
Qρ(x0,t0)

|Duε|g̃1 dx dt

)max{ 2
ε(n+2)

, 12}
+ 1

by Young’s inequality; we also used g̃1 > 2.
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Case II. Suppose then that

g(λ+ ε)

λ+ ε
> ε(1 + λ)g̃1−2.

Here we have
g(λ+ ε)

λ+ ε
≤ θελ ≤ 2

g(λ+ ε)

λ+ ε
,

and again by Proposition 3.5

|Duε(x0, t0)| ≤ λ+ c

(
max{1, θελ}

min{1, θελ}n/2

∫
Qρ(x0,t0)

(
|Duε|2 − λ2

)q
+
dx dt

) 1
2q

.

When θελ ≥ 1, choosing q = 1 leads to

|Duε(x0, t0)| ≤ λ+ c

(
g(λ+ ε)

λ+ ε

∫
Qρ(x0,t0)

(
|Duε|2 − λ2

)
+
dx dt

) 1
2

≤ λ+ c

(∫
Qρ(x0,t0)

g(|Duε|)
|Duε|

(
|Duε|2 − λ2

)
+
dx dt

) 1
2

≤ λ+ c

(∫
Qρ(x0,t0)

G(|Duε|)χ{|Duε|≥1} dx dt

) 1
2

.

The second inequality stems from the fact that

1

2
(λ+ ε) ≤ |Duε| ≤ 4(λ+ ε) (4.7)

in the set Qρ(x0, t0) ∩ {|Duε| ≥ λ} by (4.4), while for the last one we used (2.6) and the
fact that λ ≥ 1.

In the case 0 < θελ < 1 we choose q = ε(n + 2)/4 and use (1.5) and again (4.7) to
obtain

|Duε(x0, t0)| ≤ λ+ c

((
g(λ+ ε)

λ+ ε

)−n2 ∫
Qρ(x0,t0)

(
|Duε|2 − λ2

)q
+
dx dt

) 1
2q

≤ λ+ c

(∫
Qρ(x0,t0)

(
|Duε|
g(|Duε|)

)n
2 (
|Duε|2 − λ2

)q
+
dx dt

) 1
2q

≤ λ+ c

(∫
Qρ(x0,t0)

|Duε|(1−n−2
n+2−ε)

n
2 +2qχ{|Duε|≥1} dx dt

) 1
2q

= λ+ c

(∫
Qρ(x0,t0)

|Duε|1+n−2
n+2 +εχ{|Duε|≥1} dx dt

) 2
ε(n+2)

≤ λ+ c

(∫
Qρ(x0,t0)

G(|Duε|)χ{|Duε|≥1} dx dt

) 2
ε(n+2)

;

note that(
1− n− 2

n+ 2
− ε
)n

2
+ 2q =

( 4

n+ 2
− ε
)n

2
+ ε

n+ 2

2
= 1 +

n− 2

n+ 2
+ ε.

Therefore in both cases we have

|Duε(x0, t0)| ≤ λ+ c

(∫
Qρ(x0,t0)

G(|Duε|)χ{|Duε|≥1} dx dt

)max{ 1
2 ,

2
ε(n+2)}

.

Combining Cases I and II and denoting η̃ := max
{

1
2 ,

2
ε(n+2)

}
yields

|Duε(x0, t0)|
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≤ 2λ+ c

(∫
Qρ(x0,t0)

(
G(|Duε|)χ{|Duε|≥1} + ε|Duε|g̃1

)
dx dt

)η̃
+ 1

≤ 2λ+ c
(R
ρ

)(n+2)η̃
(∫

Q2R

Gε(|Duε|) dx dt
)η̃

+ 1, (4.8)

since

G(s) ≤ 1

g0
g(s+ ε)(s+ ε) ≤ 4

g0

g(s+ ε)

s+ ε
s2 ≤ 4

g0
sgε(s) ≤

4g̃1

g0
Gε(s)

for s ≥ 1 and trivially
εsg̃1 ≤ ε(1 + s)g̃1−2s2 ≤ g̃1Gε(s).

The constant c in (4.8) depends only on data, ε, c`.

Let us now choose two intermediate cylinders QR ⊂ Qr b Qs ⊂ Q2R and fix

λ := 1 +
1

4
‖Duε‖L∞(Qs) <∞, (x0, t0) ∈ Qr, ρ :=

s− r
2

> 0.

Clearly Qρ(x0, t0) ⊂ Qs so that (4.4) holds. Then (4.8) implies

‖Duε‖L∞(Qr) ≤
1

2
‖Duε‖L∞(Qs)

+ c
( R

s− r

)(n+2)η̃
(∫

Q2R

Gε(|Duε|) dx dt
)η̃

+ 3.

Now, by choosing φ(r) = ‖Duε‖L∞(Qr), iteration Lemma 2.5 gives

‖Duε‖L∞(QR) ≤ c
(∫

Q2R

[
Gε(|Duε|) + 1

]
dx dt

)η̃
. (4.9)

At this point, in order to get rid of the dependence on ε on the right-hand side, the idea is to
use the Caccioppoli inequality of Lemma 2.3 to translate the dependence onDuε to one on
uε, and the latter in turn into a dependence on ψ. Indeed, take ϕ ∈ C∞(Q4R) vanishing in
a neighborhood of ∂pQ4R such that 0 ≤ ϕ ≤ 1, ϕ = 1 inQ2R, and |Dϕ|2 +|∂tϕ| ≤ c/R2.
Since

sup
Q4R

|uε| ≤ sup
∂pΩT

|uε| = sup
∂pΩT

|ψ| ≤ ‖ψ‖L∞

by the maximum principle, Corollary 2.2, we can estimate by Lemma 2.3∫
Q2R

Gε(|Duε|) dx dt ≤ c
∫
Q4R

[
Gε(|Dϕ||uε|) + u2

ε|∂tϕ|
]
dx dt

≤ c
(

1 +
‖ψ‖L∞
R

)g̃1

+ c

(
‖ψ‖L∞
R

)2

= c
(
data, ε, c`, ‖ψ‖L∞ , R

)
. (4.10)

Note that the constant does not depend on ε. Therefore we conclude the proof of the
Proposition, modulo a standard covering argument. �

4.1. A uniform interior modulus of continuity via Lipschitz regularity. In this section
we prove that the approximating solutions uε are equicontinuous in the interior of the
domain; in particular we shall show their equi-Lipschitz regularity with respect to the
parabolic metric.

Proposition 4.2. Let uε be a solution to (4.3). Then uε ∈ Lip(1, 1/2)(ΩT ) locally, uni-
formly in ε; this is to say, for every subcylinderK b ΩT there exists a constant c depending
on data, ε, c`, ‖ψ‖L∞ , and distpar(∂pΩT ,K) such that

|uε(x, t)− uε(y, s)| ≤ c distpar

(
(x, t), (y, s)

)
(4.11)
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for every (x, t), (y, s) ∈ K and for every ε ∈ (0, 1).

Proof. Fix an intermediate set K′ such that K b K′ b ΩT and

distpar(ẑ, ∂pΩT ) = distpar(K, ∂pΩT )/2 =: d/2

for every ẑ ∈ ∂pK′. Take also a cylinder Qr(x0, t0) ⊂ K′ with (x0, t0) ∈ K; this will
happen for instance if r ≤ d/2. Since Duε is continuous, by applying the divergence
theorem and using the bound for Aε in (2.11) we infer∫

Br(x0)

uε(·, τ) dx

∣∣∣∣t2
τ=t1

=
n

r

∫ t2

t1

∫
∂Br(x0)

〈
Aε(Duε),

x− x0

|x− x0|

〉
dHn−1 dt

≤ c

r

∫ t2

t1

∫
∂Br(x0)

gε(Duε) dHn−1 dt

for all t0 − r2 < t1 ≤ t2 < t0, whereHn−1 stands for the (n− 1)-dimensional Hausdorff
measure. We thus estimate

osc
τ∈(t0−r2,t0)

(uε)Br(x0)(τ) = sup
t0−r2<t1≤t2<t0

∣∣∣∣∫
Br(x0)

uε(·, τ) dx

∣∣∣∣t2
τ=t1

∣∣∣∣
≤ c

r

∫ t0

t0−r2

∫
∂Br(x0)

gε(Duε) dHn−1 dt

≤ c r
(
1 + ‖Duε‖L∞(Qr(x0,t0))

)g̃1−1

≤ c r
(
1 + ‖Duε‖L∞(K′)

)g̃1−1
.

Now by Proposition 4.1, in particular by (4.9)-(4.10), we have

osc
τ∈(t0−r2,t0)

(uε)Br(x0)(τ) ≤ c
(
data, c`, ε, ‖ψ‖L∞ , d

)
r. (4.12)

At this point we simply split for (x1, t1), (x2, t2) ∈ Qr(x0, t0)

|uε(x1, t1)− uε(x2, t2)| ≤
∣∣∣uε(x1, t1)−

∫
Br(x0)

uε(·, t1) dx
∣∣∣

+

∣∣∣∣ ∫
Br(x0)

uε(·, t1) dx−
∫
Br(x0)

uε(·, t2) dx

∣∣∣∣+
∣∣∣uε(x2, t2)−

∫
Br(x0)

uε(·, t2) dx
∣∣∣.

While in order to bound the second term we shall use (4.12), the first and last terms can be
estimated using the mean value theorem as follows:∣∣∣uε(xi, ti)− ∫

Br(x0)

uε(·, ti) dx
∣∣∣ ≤ ∫

Br(x0)

∣∣uε(xi, ti)− uε(x, ti)∣∣ dx
≤ 2r ‖Duε‖L∞(K′),

for i ∈ {1, 2}. Therefore, using again Proposition 4.1, we have

osc
Qr(x0,t0)

uε ≤ c r (4.13)

with c as in (4.12), in particular not depending on ε. To conclude the proof, for (x1, t1),
(x2, t2) ∈ K, we simply check whether distpar

(
(x1, t1), (x2, t2)

)
≤ d/4 holds true or not;

if so, then there exists a cylinder Qr(x0, t0) with r = distpar

(
(x1, t1), (x2, t2)

)
such that

(x1, t1), (x2, t2) ∈ Qr(x0, t0) and we can apply (4.13) that directly yields (4.11). If on
the other hand distpar

(
(x1, t1), (x2, t2)

)
> d/4, then, again simply using the maximum

principle, we have

|uε(x, t)− uε(y, s)| ≤ 2‖uε‖L∞(ΩT ) ≤ 8
distpar

(
(x1, t1), (x2, t2)

)
d

‖ψ‖L∞ ; (4.14)

the proof is concluded. �
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Remark 2. Notice that, tracking the dependence on d of the constant in Proposition 4.2 and
in turn the dependence on R of estimate (4.10), and also slightly modifying the previous
proof, we deduce that estimate (4.11) can be rewritten as

|uε(x, t)− uε(y, s)| ≤
c

dγz,w
distpar

(
(x, t), (y, s)

)
, (4.15)

for an exponent γ ≡ γ(n, g1, ε) ≥ 1 and a constant c depending only on data, ε, c`,
‖ψ‖L∞ , with z = (x, t), w = (y, s) and accordingly

dz,w := min
{

distpar(z, ∂pΩT ), distpar(w, ∂pΩT ), 1
}
.

Indeed, if distpar(z, w) ≤ dz,w/8, then we can apply the argument in the first part of the
proof of Proposition 4.2 with r = distpar(z, w) to get (suppose s ≤ t)

|uε(z)− uε(w)| ≤ osc
Qr(z)

uε ≤
c

dγz,w
distpar(z, w),

where γ = g̃1(g̃1 − 1)η̃, since we have Qr(z) ⊂ Qdz,w/8(z), Qdz,w/2(z) ⊂ ΩT and so

‖Duε‖L∞(Qr(z)) ≤ ‖Duε‖L∞(Qdz,w/8(z)) ≤
c

dg̃1η̃
z,w

The case where dz,w < 8 distpar(z, w) can be approached exactly as in (4.14).

5. CONTINUITY AT THE BOUNDARY

In this section we prove that the solution to the approximating problem (4.3) is continu-
ous up to the boundary independently of ε by building an explicit barrier. We do not want
to enter the details of the theory and the general relation between existence of barriers and
regularity of the boundary points; the interested reader can see the nice paper [24] for the
evolutionary p-Laplacian, while [21, 32] summarize the results in the elliptic setting.

We shall begin with the proof of the continuity at the lateral boundary; here we shall
give all the details needed. For the continuity at the initial boundary we shall however only
sketch the proof, which on the other hand is very similar and easier than the lateral case.
Again, we will prove the existence of a uniform (in the sense that it will be independent
of ε) modulus of continuity for uε; in the last section we shall show that this modulus is
easily inherited by the limit of uε.

Let us begin with the construction of an explicit barrier at the lateral boundary. Due to
a scaling argument that will be clear soon it is enough to consider a very special case.

5.1. An explicit construction of a supersolution at the boundary. We define the func-
tion

v+(x, t) := |x′|2 +M
√
xn + (2t+ 1)−,

where M ≥ 1 is to be chosen depending on data. We aim to show that v+ is a weak
supersolution in

Q :=
{

(x, t) ∈ Rn+1 : |x′| ≤ 1, xn ∈ [0, 2], t ∈ [−1, 0]
}
.

Simple calculations show that

Dv+ = (2x′,Mx−1/2
n /2), ∂tv

+ = −2χ{−1<t<−1/2},

D2v+ = diag (2, . . . , 2,−Mx−3/2
n /4),

and moreover, since D2
i,jv

+ = 0 whenever i 6= j, we have

divA(Dv+) =

n∑
i=1

DiAi(Dv+) =

n∑
i,j=1

DξjAi(Dv+)D2
i,jv

+

= 2

n−1∑
i=1

DξiAi(Dv+)− M

4
DξnAn(Dv+)x−3/2

n .
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The first term we estimate from above using (1.9)2 and for the second term we can ap-
ply (1.9)1, since DξnAn(Dv+) = 〈DA(Dv+)ên, ên〉. Furthermore, if we require M ≥
23/216(n− 1)L/ν, we obtain

divA(Dv+) ≤
(

2(n− 1)L− ν

4
Mx−3/2

n

)g(|Dv+|)
|Dv+|

(5.1)

≤ −ν
8
Mx−3/2

n

g(|Dv+|)
|Dv+|

.

Now, observe that since M ≥ 4 we also get

|Dv+| =
√

4|x′|2 +
(
Mx

−1/2
n /2

)2 ≤Mx−1/2
n

in Q. On the other hand, we have

|Dv+| ≥Mx−1/2
n /2 ≥ 1.

Using these estimates we obtain

g(|Dv+|)
|Dv+|

≥ |Dv+|g0−2 ≥

{
1, g0 ≥ 2(
Mx

−1/2
n

)g0−2
g0 < 2

,

and thus
divA(Dv+) ≤ −ν

8
Mmin{g0,2}−1x−(min{g0,2}+1)/2

n .

The exponent of xn is negative, so that by choosing M ≡ M(data) large enough (recall
that g0 > 1), we finally obtain

∂tv
+ − divA(Dv+) ≥ −2 +

ν

8
2−(min{g0,2}+1)/2Mmin{g0,2}−1 ≥ 0.

It is easy to see that v+ ∈ V 2,G
loc (Q) and thus v+ is a (weak) supersolution in Q.

5.2. A reduction of the oscillation in a significant case. We set ourselves now in what
seems to be a very particular, unitary case; it will be clear soon that, up to a simple rescaling
procedure, this will be the significant case for the proof.

Let Ω̄ be a bounded C1,β domain and Ω̄T := Ω̄ × (−1, 0). Suppose that 0 ∈ ∂Ω̄ and
the orthonormal system where the boundary is a graph is the standard cartesian one, with
the direction where ∂Ω̄ is a graph given by ên. We hence have

∂Ω̄ ∩ {|x′| < 1, |xn| < 1} = graph θ̄, with θ̄ : B′1(0)→ (−1, 1) and θ̄(0) = 0

and Ω̄ ∩ {|x′| < 1, |xn| < 1} is the epigraph of θ̄. Let ū be a weak solution to (1.8)1 in

Ω̄T ∩Q1 with Q1 := B′1 × (−1, 1)× (−1, 0) ⊂ Rn+1,

such that ū = ψ̄ in ∂pΩ̄T ∩ Q1. Moreover, we suppose ψ̄(0) = ū(0) = 0. Take δ ∈ (0, 1)
to be fixed later. We assume that

the graph of θ̄ over B′1 is contained in the cylinder B′1 × (−δ, δ) (5.2)

and moreover that

osc
∂Ω̄∩B′1×(−1,1)

ψ̄ ≤ δ and osc
Ω̄T∩Q1

ū ≤ 1 (5.3)

Let us take the barrier v+ built in the previous paragraph and shift it in the ên direction
as follows:

v+
δ (x′, xn, t) := v+(x′, xn + δ, t) + δ.

Now v+
δ is defined and continuous, in particular, over the parabolic closure of Ω̄T ∩ Qδ ,

whereQδ = B′1×(−δ, 1)×(−1, 0), and there it is still a supersolution to an equation struc-
turally similar to (1.8)1. The aim is to prove that ū ≤ v+

δ on ∂p(Ω̄T ∩ Qδ) by considering
the different pieces:
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• on [∂Ω̄× (−1, 0)] ∩Qδ we estimate

ū− v+
δ ≤ ψ̄ − δ ≤ 0

using (5.3)1 and since v+ ≥ 0;
• on

[
(∂B′1 × [−δ, 1]) ∩ Ω̄

]
× (−1, 0) we have

ū− v+
δ ≤ 1− 1− δ ≤ 0,

by (5.3)2 together with ū(0) = 0 and the fact that v+ ≥ 1, since |x′| = 1;
• on B′1 × {1} × (−1, 0) we have

ū− v+
δ ≤ 1−M ≤ 0, (5.4)

since ū ≤ 1 as above and on {xn = 1} we have v+
δ ≥M ≥ 1;

• finally, on Ω̄ ∩ (B′1 × (−δ, 1))×{−1}we again have v+
δ ≥ 1 due to the expression

of the time-dependent part, and therefore the conclusion again follows.
Note that the first three pieces exhaust the lateral boundary of Ω̄T ∩ Qδ , while the fourth
one makes up its initial boundary. Therefore, we have ū ≤ v+

δ on the parabolic boundary
of Ω̄T ∩Qδ and hence, by Proposition 2.1, ū ≤ v+

δ in Ω̄T ∩Qδ . Now, if δ ≤ 1/2, we have

v+
δ ≤ δ

2 +M(2δ)1/2 in [(B′δ × (−δ, δ)) ∩ Ω̄]× (−δ, 0).

Therefore, if we choose δ small enough, depending only onM and so ultimately on data,
such that δ2 +M(2δ)1/2 ≤ 1/4, then we have

sup
[(B′δ×(−δ,δ))∩Ω̄]×(−δ,0)

ū ≤ 1

4
.

Completely analogously we may consider the subsolution v−(x′, xn, t) = −v+(x′, xn, t)
to obtain a corresponding bound from below. All in all, we conclude with

osc
[Bδ∩Ω̄]×(−δ,0)

ū ≤ 1

2
. (5.5)

5.3. Iteration. Let R0 ≤ min{RΩ, 1} be fixed and let Qωr (x0, t0) be a cylinder not inter-
secting the initial boundary, with x0 ∈ ∂Ω, ω > 0 and r ≤ R0. Since we are supposing
R0 ≤ RΩ, we have that the boundary of Ω can be written as a C1,β graph in Br: there
exists a unitary vector ê ∈ Rn such that if we set T : Rn → Rn for the orthogonal
transformation that maps ên = (0, . . . , 0, 1) into ê, we have

T−1(∂Ω− x0) ∩
(
B′r × (−r, r)

)
= graph θ

for some θ ∈ C1,β(B′r) with values in (−r, r). We now start from the assumption

osc
ΩT∩Qωr (x0,t0)

uε ≤ ω. (5.6)

We define, for j ∈ N, the quantities

ωj := 2−jω, rj+1 = min
{
σrj , rj+1

}
, r0 = r

where σ ∈ (0, 1/2) is such that σ ≤ δ√
2

and (2σ)g0 ≤ 4(
√

2)−g1δ (see (5.9)), with
δ ∈ (0, 1/2) being the constant defined in the previous paragraph, and r̄j is such that

osc
∂latΩT∩Q

ωj
rj

(x0,t0)

ψ ≤ δ ωj . (5.7)

Note that this is possible, sinceψ is continuous so that at ωj fixed the map ρ 7→ osc
Q
ωj
ρ (x0,t0)

ψ

vanishes as ρ→ 0. We prove by induction

osc
ΩT∩Q

ωj
rj

(x0,t0)

uε ≤ ωj . (5.8)
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Now (5.8)0 is simply (5.6), so we suppose that (5.8)j holds and we prove (5.8)j+1, for
j ∈ N0. Rescale uε as follows:

ū(x, t) :=
1

ω j
uε

(
x0 +

rj√
2
Tx, t0 + ω2

j

[
G
(√2ωj

rj

)]−1

t
)
− uε(x0, t0)

ωj
.

This is a solution to an equation structurally similar to (1.8)1, see Paragraph 2.6, in partic-
ular in [(B′1 × (−1, 1)) ∩ Ω]× (−1, 0), with boundary datum

ψ̄(x, t) :=
1

ω j
ψ
(
x0 +

rj√
2
Tx, t0 + ω2

j

[
G
(√2ωj

rj

)]−1

t
)
− uε(x0, t0)

ωj

and where the boundary of Ω̄ := [
√

2T−1(Ω − x0)/rj ] ∩ (B′1 × (−1, 1)) is given by the
graph of the function θ̄(x′) = θ(rjx

′/
√

2)/rj over B′1. We have

osc
B′1

|Dθ̄| = 1√
2

osc
B′
rj/
√

2

|Dθ| ≤ 1√
2

osc
B′R0

|Dθ| ≤ Rβ0√
2

Θ.

Now we choose R0 small enough so that the right hand side of the chain of inequalities in
the above display is smaller than δ, where δ is the quantity fixed in the previous paragraph.
This ensures that (5.2) is satisfied (since Dθ(0) = Dθ̄(0) = 0 = θ(0) = θ̄(0)). Since all
the other assumptions in Paragraph 5.2 are satisfied (in particular by our choice of r̄j), we
have estimate (5.5) at hand; therefore (5.8)j+1 follows by our definition of rj+1 and ωj+1.
Indeed, scaling back we have

osc
ΩT∩Q̂rj

uε ≤
1

2
ωj with Q̂rj := Bδrj/

√
2(x0)×

(
t0 − δ ω2

j

[
G
(√2ωj

rj

)]−1

, t0

)
and by (2.10) and our definition of σ, we infer

ω2
j+1

[
G
(ωj+1

rj+1

)]−1

≤ (2σ)g0

4
ω2
j

[
G
(ωj
rj

)]−1

≤ δ

(
√

2)g1
ω2
j

[
G
(ωj
rj

)]−1

≤ δ ω2
j

[
G
(√2ωj

rj

)]−1

. (5.9)

Finally, we note that the lengths of the time intervals also go to zero, that is, the cylinders
are shrinking. Indeed, the first inequality in the above computation shows that the ratio of
two consecutive time scales is bounded by (2σ)g0/4, which is clearly strictly smaller than
one.

5.4. Some quantitative estimates. Let us set

ω := 2‖ψ‖L∞ + 1,

fix a radius r < R0, and take a point (x0, t0) ∈ ∂latΩT such that QG
max{1,ω2/g0−1}r(x0, t0)

does not intersect the initial boundary. Clearly (5.6) holds by the maximum principle. Now
we recall that ψ has the modulus of continuity ωψ:

|ψ(x, t)− ψ(y, s)| ≤ ωψ
(
distpar,G((x, t), (y, s))

)
for all (x, t), (y, s) ∈ ∂pΩT . Since

Qωjρ (x0, t0) ⊂ Bρ(x0)× (t0 − [G(2−j(1−2/g1)ω1−2/g0/ρ)]−1, t0),

we have
Qωjρ (x0, t0) ⊂ QGAjρ(x0, t0),

with Aj := max{1, 2j(1−2/g1)ω2/g0−1} ≥ 1. Thus we see that if we want (5.7) satisfied,
it is enough to require

Aj r̄j ≤ max{1, ω2/g0−1}r,
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so that QGAj r̄j (x0, t0) does not intersect the initial boundary, and

ωψ(r̄j) ≤ δ A−1
j ωj = δmin{2−jω, 2−2j(1−1/g1)ω2(1−1/g0)}

by the concavity of ωψ(·). At this point we have (5.8) at our disposal, and this will be used
noting that in particular we have

Qωjrj (x0, t0) ⊃ QGrj/Bj (x0, t0)

with Bj := max{1, 2−j(1−2/g0)ω1−2/g1} ≥ 1. Hence, for (x, t) ∈ ΩT ∩ QGr/B0
(x0, t0)

fixed we find the largest j ∈ N0 such that
rj+1

Bj+1
≤ distpar,G((x, t), (x0, t0)) <

rj
Bj
.

Note that this is possible, since clearly rj/Bj ≤ rj → 0 as j →∞. At this point

|uε(x, t)− uε(x0, t0)| ≤ osc
ΩT∩Q

ωj
rj

(x0,t0)

uε ≤ 2−jω.

Let {(rj+1/Bj+1, 2
−jω)}j∈N0

be a sequence of points in R2 and call ωu the smallest con-
cave function such that ωu(rj+1/Bj+1) ≥ 2−jω; note that ωu is a modulus of continuity.
For instance, one can take the piecewise linear interpolation of the sequence {(xj , yj)}j∈N
given by xj = maxk≥j+1 rk/Bk, yj = 2−jω, which is component-wise decreasing as j
increases. This finally leads to

|uε(x, t)− uε(x0, t0)| ≤ 2−jω ≤ ωu(rj+1/Bj+1) ≤ ωu
(
distpar,G((x, t), (x0, t0))

)
,

(5.10)
and this holds for (x, t) ∈ ΩT ∩QGr/B0

(x0, t0). In fact, it also holds for points (x, t) outside
QGr/B0

(x0, t0), since then we have distpar,G((x, t), (x0, t0)) > r/B0 and thus

|uε(x, t)− uε(x0, t0)| ≤ 2B0

r
||ψ||L∞

r

B0
≤ c distpar,G((x, t), (x0, t0))

by the maximum principle. Note that the modulus of continuity ωu at this point depends
on data, ||ψ||L∞ , ωψ but also on r.

If now ψ is γ-Hölder continuous with respect to the G-parabolic metric, then we see
that it is enough to take r̄j = c(data, ω, γ)2−ηjr for some η ≡ η(g1, γ). This yields
that the numbers rj can be written as η̄jr for some η̄ ∈ (0, 1). Now the Hölder continuity
follows, for instance, similarly to [14, Chapter III, Lemma 3.1].

5.5. Continuity at the initial boundary. We begin by modifying the barrier built in Para-
graph 5.1 to meet the different situations at the initial boundary. We start by considering the
case where, before rescaling, we have a solution in a cylinder Br(x0) × (0, ω2/G(ω/r)),
with Br(x0) ⊂ Ω, equal to ψ̄ over Br(x0) × {0}; that is, the true case of initial bound-
ary continuity. Later on we shall face the “corner case”, that is the case of cylinders
Br(x0)× (0, ω2/G(ω/r)) with x0 ∈ ∂Ω.

After rescaling, one sees that it is enough to build a supersolution inQ := B1×(0, 1). In
this case the explicit expression is simply v+(x, t) := |x|1/2. We then have v+ ∈ V 2,G

loc (Q)
and v+ is a supersolution to (1.8)1 in Q. Moreover, if we further suppose that

osc
B1×{0}

ψ̄ ≤ δ, osc
Q
ū ≤ 1, ū(0, 0) = ψ̄(0, 0) = 0

for some δ ∈ (0, 1), it is easy to see that ū ≤ v+ + δ on ∂pQ. Indeed on ∂B1 × (0, 1) we
have v+ = 1 but ū ≤ 1, while on B1 × {0} we have ū = ψ̄ ≤ δ and v+ ≥ 0. Therefore
we can deduce by Proposition 2.1 that ū ≤ v+ + δ in Q. Now the proof goes on similarly
as in Paragraphs 5.2 to 5.4, with possibly new constants δ and R0.

For the “corner situation”, we are lead to consider a solution in a domain of the type
Q := B′1 × (−1, 1) × (0, 1); the supersolution in this case is v+ = |x′|2 + Mx

1/2
n , with
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M as in Paragraph 5.1. The fact that the function is a supersolution follows plainly from
(5.1). Assuming now that the boundary graph θ̄ over B′1 takes values in (−δ, δ) and

osc
∂pΩ̄T∩Q

ψ̄ ≤ δ, osc
Q
ū ≤ 1, ū(0, 0) = ψ̄(0, 0) = 0,

we have ū ≤ v+
δ in ∂pΩ̄T ∩ Q, since ū = ψ̄ ≤ δ there; on the remaining part of the

parabolic boundary ofQ we use the fact that v+
δ is larger than one, as in (5.4). Again, now

the proof is similar as above.
In both cases, a scaling and iteration procedure like the one used in Paragraph 5.4 allows

us to prove the reduction of oscillation in a sequence of nested cylinders of the type (Ω ∩
Brj (x0))× (0, ω2

jG(ωj/rj)), with x0 ∈ Ω. This leads to

|uε(x, t)− uε(x0, 0)| ≤ ωu
(
distpar,G((x, t), (x0, 0))

)
. (5.11)

for every (x, t) ∈ ΩT . Moreover, opportune statements similar to above still hold in the
case ψ is Hölder continuous.

At this point we call R̃ the smallest value of R0 coming from the three different cases,
ultimately a constant depending on data and ∂Ω. Choose r = R̃/2. Now r is a constant
depending only on data and ∂Ω. By combining the boundary estimates (5.10) and (5.11)
with the interior estimate in Remark 2 we obtain

|uε(x, t)− uε(y, s)| ≤ ωu
(
distpar,G((x, t), (y, s))

)
(5.12)

for every (x, t), (y, s) ∈ ΩT
p
, where ωu depends on data, ε, c`, ωψ, ‖ψ‖L∞ , ∂Ω. Indeed,

if one of the points is in ∂pΩT , then (5.12) is either (5.10) or (5.11). In the case where both
(x, t), (y, s) ∈ ΩT we consider two different cases. Either the mutual distance of (x, t)
and (y, s) is small compared to their distance to the boundary, in which case we use the
interior estimate, or otherwise we can again use the boundary estimates.

Let us make this rigorous. Denote z = (x, t), w = (y, s). If distpar,G(z, w) ≥ 1, we
are done by the maximum principle. Note now that if distpar,G(z, w) ≤ 1, we have

distpar,G(z, w)max{1,g1/2} ≤ distpar(z, w) ≤ distpar,G(z, w)min{1,g0/2}.

Observe that (4.15) can be written in terms of the parabolic G-distance as follows:

|uε(z)− uε(w)| ≤ c
[
dGz,w

]−γmax{1,g1/2} distpar,G(z, w)min{1,g0/2},

where

dGz,w := min
{

distpar,G(z, ∂pΩT ), distpar,G(w, ∂pΩT ), 1
}
.

If now distpar,G(z, w) ≤
[
dGz,w

]2γmax{1,g1/2}, that is, the mutual distance of z and w is
small compared to their distance to the boundary, then we have

|uε(z)− uε(w)| ≤ c distpar,G(z, w)min{1,g0−1}/2.

On the other hand, when distpar,G(z, w) >
[
dGz,w

]2γmax{1,g1/2} there exists a cylinder
QGρ (x0, t0) 3 z, w with ρ = 2distpar,G(z, w)min{1/2,1/g1}/γ such that either x0 ∈ ∂Ω or
the bottom of QGρ (x0, t0) touches the initial boundary. Now using triangle inequality and
the boundary estimates yields

|uε(z)− uε(w)| ≤ 2ωu(ρ) ≤ 4ωu
(
distpar,G(z, w)min{1/2,1/g1}/γ

)
.

Finally, we take the largest modulus of continuity ωu for which all the conditions proved
above are satisfied, and this proves (5.12). The proof in the Hölder case is similar, since in
this case we can quantify all the moduli.
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6. CONCLUSION

Call uj := uε for ε = 1/j, j ∈ N, and similarly Aj , gj , φj . From the results of the
preceding section, that is, from the equi-boundedness of the sequence {uj}j∈N following
from the maximum principle Corollary 2.2 and the global equi-continuity coming from the
results of Sections 4 and 5, using Ascoli-Arzelà theorem we see that uj → u uniformly
in C0(ΩT

p
) for some u ∈ C0(ΩT

p
). Now all we have left to prove is that u is a weak

solution to (1.8)1, which follows easily from the next proposition.

Proposition 6.1. Let uj ∈ V 2,G
loc (ΩT ) ∩ C0(ΩT

p
) be the solutions to (4.3) defined above.

Suppose there exists a function u such that uj → u almost everywhere in ΩT . Then
Duj → Du almost everywhere.

Proof. Take K b ΩT and choose a cutoff function ϕ ∈ C∞c (ΩT ) such that 0 ≤ ϕ ≤
1, ϕ = 1 in K, and ‖∂tϕ‖L∞(ΩT ), ‖Dϕ‖L∞(ΩT ) ≤ c for some c ≥ 1 depending on
dist(K, ∂pΩT ). Let j, k ∈ N and test the weak formulations of uj and uk with η = wj,kϕ,
where wj,k := uj − uk. This choice can be justified by standard methods such as Steklov
averages. By subtracting we obtain

0 = −
∫

ΩT

wj,k∂t(wj,kϕ) dx dt+

∫
ΩT

〈Aj(Duj)−Ak(Duk), D(wj,kϕ)〉 dx dt

= −1

2

∫
ΩT

w2
j,k∂tϕdx dt+

∫
ΩT

〈
Aj(Duj)−Ak(Duk), Dϕ〉wj,k dx dt

+

∫
ΩT

〈
Aj(Duj)−A(Duj), Dwj,k

〉
ϕdx dt

+

∫
ΩT

〈
A(Duj)−A(Duk), Dwj,k

〉
ϕdx dt

+

∫
ΩT

〈
A(Duk)−Ak(Duk), Dwj,k

〉
ϕdx dt =: I + II + III + IV + V.

Since ‖Duj‖L∞(ΩT ) ≤ c uniformly with respect to j by Proposition 4.1, we also have

‖Aj(Duj)‖L∞(ΩT ) ≤ cgj
(
‖Duj‖L∞(ΩT )

)
≤ c.

Thus, by the definition of Aj

|I + II + III + V | ≤ c ‖uj − uk‖L2(ΩT ) + c‖(φj ∗ A)(Duj)−A(Duj)‖L2(ΩT )

+ c‖A(Duk)− (φk ∗ A)(Duk)‖L2(ΩT ) + c (1/j + 1/k).

The first term on the right-hand side tends to zero as j, k → ∞ by Lebesgue’s dominated
convergence theorem and the second and third by the properties of mollifiers; the last one
is obvious. On the other hand, by (2.13)

IV ≥ c
∫
K
|Vg(Duj)− Vg(Duk)|2 dx dt.

Thus

c

∫
K
|Vg(Duj)− Vg(Duk)|2 dx dt ≤ IV ≤ |I + II + III + V | → 0

as j, k → ∞. We have shown that the sequence {Vg(Duj)}j∈N is Cauchy in L2(K)
and therefore there exists a function w ∈ L2(K) such that Vg(Duj) → w in L2(K) as
j → ∞. This implies that there exists a (nonrelabeled) subsequence Vg(Duj) converging
to w almost everywhere in K. Now the fact that Vg has a continuous inverse yields

Duj = V −1
g (Vg(Duj))→ V −1

g (w) =: v

almost everywhere in K.
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Now, since uj → u almost everywhere in K, we have for any φ ∈ C∞c (K) that∫
K
uDφdx dt = lim

j→∞

∫
K
ujDφdxdt = − lim

j→∞

∫
K
Duj φdx dt = −

∫
K
vφ dx dt

by Lebesgue’s dominated convergence theorem and the definition of weak gradient, show-
ing that v = Du. Thus, we have Duj → Du almost everywhere in K for any K b ΩT ,
which implies that Duj → Du almost everywhere in ΩT . �

To conclude, (1.10) follows from (4.9) simply using the local almost everywhere con-
vergence of Duε, and (1.11) follows from (5.12) using the global uniform convergence of
uε.

6.1. Weakening the assumptions. As mentioned in Remark 1, in this paragraph we show
how to modify the proofs of the paper in order to obtain Theorems 1.1 and 1.2 for vector
fields satisfying the weaker assumptions (1.12).

We observe that assumptions (1.9) are only used in order to have the analogous proper-
ties for the regularized vector fieldAε defined in (4.1). Moreover, (2.11) and (2.12) trivially
hold by taking ξ2 = 0 in (1.12). Thus, it suffices to show that under the assumptions (1.12)
we still have (1.9) for Aε with g replaced by gε defined in (4.2).

We shall focus only on the convolution part of the vector field Aε, since for the part
involving the nondegenerate g̃1-Laplacian the corresponding estimates are classic and easy
to verify. Therefore, we only need to prove (1.9) with A replaced by φε ∗ A and g(s)

replaced by g(s+ε)
s+ε s. Using (1.12) we have

〈D(φε ∗ A)(ξ)λ, λ〉 = lim
h→0

1

h

∫
Bε(0)

〈A(ξ + hλ− η)−A(ξ − η), λ〉φε(η) dη

≥ 2g0−2ν

∫
B1(0)

g(|ξ − εη|)
|ξ − εη|

φ(η) dη |λ|2

and

|Dj(φε ∗ A)(ξ)| = lim
h→0

1

h

∣∣∣∣∣
∫
Bε(0)

(A(ξ + hêj − η)−A(ξ − η))φε(η) dη

∣∣∣∣∣
≤ 2g1−2L

∫
B1(0)

g(|ξ − εη|)
|ξ − εη|

φ(η) dη.

Hence, if we can show that∫
B1(0)

g(|ξ − εη|)
|ξ − εη|

φ(η) dη ≈ g(|ξ|+ ε)

|ξ|+ ε
(6.1)

independently of ε, we are done.
Consider first the case |ξ| ≥ 2ε. This implies |ξ− εη| ≥ 1

3 (|ξ|+ ε), and thus |ξ− εη| ≈
|ξ|+ ε so that (6.1) holds. On the other hand, if |ξ| < 2ε, we have∫

B1(0)

g(|ξ − εη|)
|ξ − εη|

φ(η) dη ≤ sup
B1(0)

φ

∫
B3(ξ/ε)

1

|ξ/ε− η|
dη

g(|ξ|+ ε)

ε

≤ c(n) sup
B1(0)

φ
g(|ξ|+ ε)

|ξ|+ ε

and ∫
B1(0)

g(|ξ − εη|)
|ξ − εη|

φ(η) dη ≥
∫
B1/2(0)\B1/4(ξ/ε)

g(|ξ − εη|)
|ξ − εη|

φ(η) dη

≥ inf
B1/2(0)

φ |B1/2(0) \B1/4(ξ/ε)| g(ε/4)

|ξ|+ ε
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≥ c(n, g1) inf
B1/2(0)

φ
g(|ξ|+ ε)

|ξ|+ ε
.

Note that we can assume without loss of generality that supB1(0) φ ≤ c and infB1/2(0) φ ≥
1/c for some c ≡ c(n) > 0.
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