We prove that suitable asymptotic formulae in short intervals hold for the problems of representing an integer as a sum of a prime square and a square, or a prime square. Such results are obtained both assuming the Riemann Hypothesis and in the unconditional case.
Short intervals asymptotic formulae for binary problems with primes and powers, II: density 1 / Languasco, Alessandro; Zaccagnini, Alessandro. - In: MONATSHEFTE FÜR MATHEMATIK. - ISSN 0026-9255. - 181:2(2016), pp. 419-435. [10.1007/s00605-015-0871-z]
Short intervals asymptotic formulae for binary problems with primes and powers, II: density 1
ZACCAGNINI, Alessandro
2016-01-01
Abstract
We prove that suitable asymptotic formulae in short intervals hold for the problems of representing an integer as a sum of a prime square and a square, or a prime square. Such results are obtained both assuming the Riemann Hypothesis and in the unconditional case.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
asymp-short-density1.pdf
accesso aperto
Descrizione: Versione finale pre-stampa
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
244.58 kB
Formato
Adobe PDF
|
244.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.