We consider the total curvature of graphs of curves in high codimension Euclidean space. We introduce the corresponding relaxed energy functional and prove an explicit representation formula. In the case of continuous Cartesian curves, i.e. of graphs cu of continuous functions u on an interval, we show that the relaxed energy is finite if and only if the curve cu has bounded variation and finite total curvature. In this case, moreover, the total curvature does not depend on the Cantor part of the derivative of u. We treat the wider class of graphs of one-dimensional BV -functions, and we prove that the relaxed energy is given by the sum of length and total curvature of the new curve obtained by closing with vertical segments the holes in cu generated by jumps of u.

Curvature-dependent energies: a geometric and analytical approach / Acerbi, Emilio Daniele Giovanni; Mucci, Domenico. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 147:3(2017), pp. 449-503. [10.1017/S0308210516000202]

Curvature-dependent energies: a geometric and analytical approach

ACERBI, Emilio Daniele Giovanni;MUCCI, Domenico
2017

Abstract

We consider the total curvature of graphs of curves in high codimension Euclidean space. We introduce the corresponding relaxed energy functional and prove an explicit representation formula. In the case of continuous Cartesian curves, i.e. of graphs cu of continuous functions u on an interval, we show that the relaxed energy is finite if and only if the curve cu has bounded variation and finite total curvature. In this case, moreover, the total curvature does not depend on the Cantor part of the derivative of u. We treat the wider class of graphs of one-dimensional BV -functions, and we prove that the relaxed energy is given by the sum of length and total curvature of the new curve obtained by closing with vertical segments the holes in cu generated by jumps of u.
Curvature-dependent energies: a geometric and analytical approach / Acerbi, Emilio Daniele Giovanni; Mucci, Domenico. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 147:3(2017), pp. 449-503. [10.1017/S0308210516000202]
File in questo prodotto:
File Dimensione Formato  
Preprint_curv.pdf

accesso aperto

Descrizione: preprint, sostanzialmente identico allo stampato (reperibile online)
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 477.61 kB
Formato Adobe PDF
477.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2818243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact