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Curvature-dependent energies:

a geometric and analytical approach

Emilio Acerbi and Domenico Mucci

Abstract. We consider the total curvature of graphs of curves in high codimension Euclidean space. We

introduce the corresponding relaxed energy functional and prove an explicit representation formula. In the case of

continuous Cartesian curves, i.e. of graphs cu of continuous functions u on an interval, we show that the relaxed

energy is finite if and only if the curve cu has bounded variation and finite total curvature. In this case, moreover,

the total curvature does not depend on the Cantor part of the derivative of u. We treat the wider class of graphs

of one-dimensional BV -functions, and we prove that the relaxed energy is given by the sum of length and total

curvature of the new curve obtained by closing with vertical segments the holes in cu generated by jumps of u.

In the mathematical literature, functionals depending on second order derivatives have recently been
applied e.g. in image restoration processes, in order to overcome some drawbacks typical of approaches
based on first order functionals, as the total variation. One instance is the approach by Chan-Marquina-
Mulet [6] who proposed to consider regularizing terms given by second order functionals of the type

∫

Ω

|∇u| dx+

∫

Ω

ψ(|∇u|)h(∆u) dx

for scalar-valued functions u defined in two-dimensional domains, where the function ψ satisfies suitable
conditions at infinity in order to allow jumps.

The downscaled one-dimensional version of the above functional is given by

∫ b

a

|u̇| dt+
∫ b

a

ψ(|u̇|) |ü|p dt , p ≥ 1 , u : [a, b] → R (0.1)

and it has been thoroughly studied in [8], where Dal Maso-Fonseca-Leoni-Morini proved an explicit
formula for the relaxed energy, under suitable assumptions on the function ψ.

The prototypical example is the curvature energy functional, given by choosing

ψp(t) :=
1

(1 + t2)(3p−1)/2
.

In this case, in fact, the above functional takes the form

Ep(u) :=
∫ b

a

|u̇| dt+
∫ b

a

√
1 + u̇(t)2 · ku(t)p dt , ku(t) :=

|ü(t)|
(1 + u̇(t)2)3/2

.

Therefore, in the smooth case, considering the Cartesian curve cu(t) := (t, u(t)), since ku(t) is the
curvature at the point cu(t), and replacing the first term with the integral of

√
1 + u̇2, by the area

formula one obtains an intrinsic formulation on the graph curve cu as

Ep(u) = L(cu) +
∫

cu

kpu dH1 ,

where L is the length.
In this paper, restricting to the linear case p = 1, and leaving the case p > 1 to a further research,

we deal with the higher codimension analogous of the above curvature functional, proving a complete
explicit formula for its relaxed energy.

1
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More precisely, for C2-functions u : I → RN , where I = [a, b], we set

E(u) = L(cu) +
∫

cu

ku dH1 ,

where ku is the curvature of the Cartesian curve cu(t) := (t, u(t)), see (1.6), and we define

E(u) := inf
{
lim inf
h→∞

E(uh) | {uh} ⊂ C2(I,RN ) , uh → u in L1
}

(0.2)

for any summable function u ∈ L1(I,RN ).
Any function u with finite relaxed energy (0.2) has bounded variation, with distributional derivative

decomposed as usual by Du = u̇L1 +DCu +DJu. A crucial role is played here by the Gauss map τu
that is defined a.e. in I by means of the approximate gradient u̇, namely

τu =
ċu
|ċu|

, ċu = (1, u̇1, . . . , u̇N ) . (0.3)

For our purposes, we recall that the total curvature TC(c) of a curve c has been defined by Milnor
[19] as the supremum of the total curvature (i.e. the sum of the turning angles) of the polygons inscribed
in c. A curve with finite total curvature is rectifiable, and hence it admits a Lipschitz parameterization.
Therefore, it is well defined the tantrix (or tangent indicatrix), that assigns to a.e. point the oriented
unit tangent vector tc. Moreover, see Proposition 1.3, the total curvature agrees with the essential total
variation of the tantrix.

For smooth Cartesian curves cu the tantrix tcu agrees with the Gauss map τu, whence the total
curvature TC(cu) is equal to the total variation of τu. Therefore, for C

2-functions u one has

TC(cu) =

∫

cu

ku dH1 =

∫

I

|τ̇u| dt .

As we shall describe below, see (0.4), in the relaxation process the role of the tantrix is played by the
Gauss map (0.3).

In the case of codimension N = 1, in [8] it is proved that the function t 7→ arctan u̇(t) has bounded
variation. We will recover also this result, and the explicit formula for the relaxed energy (0.2) obtained
in [8] is reproduced at the beginning of Sec. 4 below.

The authors of [8] show the existence of functions with finite relaxed energy (0.2) but with a non-
trivial Cantor component of the derivative. However, they also prove a concentration property for the
Cantor part DCu, namely, its positive and negative parts are concentrated on the set of points where
the approximate gradient is equal to ±∞, see Definition 4.1. Roughly speaking, for continuous functions
such a geometric property implies that the Cartesian curve cu does not have “angles” in correspondence
of points in the Cantor set of u. From our analytic/geometric viewpoint this justifies why the Cantor
part of the distributional derivative DCu does not appear in the curvature part of the relaxed energy.
We remark that the total variation of arctan u̇ agrees with the total variation of the Gauss map τu.

The techniques used in [8] are deeply analytical, as the authors deal with more general functionals of
the type (0.1), and hence do not make use of the geometric properties that are specific of the curvature.

Our approach to the study of the relaxed energy (0.2) is much more of geometric flavor, instead, and
differently from [8] it allows us to work in any codimension N ≥ 1. For this reason we shall use some
features of the theory of currents with its powerful theoretical results.

Beside the interest by itself, our study is motivated by the fact that functionals depending on the
curvature of vector valued curves play a crucial role e.g. in the study of vibration of strings and go back
to the work by Euler.

This approach of bridging the singularities of a deformation by means of currents may be compared
to the work by Marcellini [18] in the context of finding semicontinuous elastic energies in presence of
cavitation, see also [20]. Another similar approach, in the case of parametric curves, may be found in [7].

The mathematical literature concerning curvature functionals is very wide, and our list of references
is far from being exhaustive. We recall here that a different approach based on the theory of varifolds
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has been considered in [16, 17]. Moreover, further properties concerning curvature functionals of curves
have been obtained in [4, 5, 7].

Main results. In this paper, we shall prove in any codimension that for any function u ∈ BV (I,RN )
with finite relaxed energy (0.2), the Gauss map τu : I → S

N , defined in (0.3), is a function with bounded
variation, Theorem 4.7.

Moreover, see Theorem 9.2, we shall prove that any continuous function u ∈ BV (I,RN ) has finite
relaxed energy (0.2) if and only if the Cartesian curve cu has finite total curvature TC(cu), and in this
case we shall prove the equality

TC(cu) = |Dτu|(I) . (0.4)

This second result says that the total variation of the tantrix of the graph of a continuous function u
with finite relaxed energy does not read jumps in presence of the Cantor part of the derivative DCu. In
some sense, the above fact is the higher codimension analogous of the previously mentioned concentration
property from [8] of the Cantor component DCu, in the case N = 1.

These geometric facts are at the basis of the proof of the lower bound, Theorem 8.1, and upper bound,
Theorem 8.5, yielding to an explicit formula for the relaxed energy (0.2), that we now describe.

For continuous functions such that E(u) < ∞, recalling (0.4), we shall obtain in Sec. 9 that the
relaxed energy is the sum of the length and of the total curvature of the Cartesian curve cu, together
with the representation of the total curvature:

E(u) = L(cu) + TC(cu) , TC(cu) = |Dτu|(I) . (0.5)

In the general case, i.e. when u is a BV -function with a non-trivial Jump set Ju, we shall prove that

E(u) = |Dcu|(I) + |Dτu|(I \ Ju) +M(SJc
u ) . (0.6)

The second term in (0.6) involves the total variation of the Gauss map τu outside the Jump set Ju.
The so called Jump-corner term M(SJc

u ) is an energy contribution that “lives” in the Jump set of u,
see (5.9) and (5.13). Roughly speaking, it is given by the sum at each discontinuity point t ∈ Ju of
the two turning angles that appear in the graph of the function u when connecting the endpoints of a
discontinuity in the graph with a straight line segment. Notice that in codimension N = 1, we have
|Dτu|(I \ Ju) = |D arctan u̇|(I \ Ju), whereas the Jump-corner term M(SJc

u ) takes the same value as the
corresponding term obtained in [8] for the energy density ψp with p = 1, compare Corollary 7.9.

At the end, we read formula (0.6) in a simple way by introducing the continuous curve c̃u obtained
by closing the graph of u as above. We will prove our main result:

E(u) = L(c̃u) + TC(c̃u) (0.7)

that reduces to (0.5) in case of continuous functions.

Plan of the paper. In Sec. 1, we recall some features concerning the total curvature of curves,
and we restrict to the subclass of Cartesian curves, introducing our model energy.

In Sec. 2, we collect some basic facts concerning functions of bounded variations, compare [2]. We
shall make use of techniques based on Geometric Measure Theory, and in particular on the theory of
Cartesian currents by Giaquinta-Modica-Souček [13], that we shall briefly recall.

Our approach to the relaxation problem also relies on some ideas from the theory of Gauss graphs
of curves, that is the graph of the couple (c, tc), compare [3] and [9], but re-written in the context
of Cartesian curves. In Sec. 3, we shall then focus on the class of currents GGu in U × SN , where
U := I̊ × RN , that are carried by the Gauss graphs of C2-functions u, which are parameterized by the
map Φu(t) := (cu(t), τu(t)).

In Sec. 4, we shall introduce the class of 1-currents in U × S
N that arise as weak limits (in the sense

of currents) of sequences {GGuh
} of Gauss graphs of smooth Cartesian curves with equibounded masses.

This class will be denoted by Gcart(U × SN ), compare (4.4). We shall then analyze some properties
concerning functions with finite relaxed energy (0.2), proving in particular that τu ∈ BV in the already
cited Theorem 4.7.
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In Sec. 5, we shall extend the notion of current GGu carried by the Gauss graph to any function u with
finite relaxed energy (0.2). This current is naturally defined by three terms, GGu = GGa

u+GG
C
u +GGJ

u,
the absolute continuous, Cantor, and Jump component, respectively. Our definition makes sense because
we already know that both the function cu and the Gauss map τu have bounded variation. In general
the “Gauss graph” GGu has fractures, or holes. We shall then see that there is a natural (and optimal)
way to find a “vertical” current Su such that Σu := GGu + Su is an integer multiplicity (say i.m.)
rectifiable current in U × SN without boundary. The current Su is made by two terms. The first one is
the corner component Sc

u, that is used to “fill the holes” in the Gauss graph given by the corners of the
curve cu, i.e., the points where u is continuous but the Gauss map τu is discontinuous. The second one
is the already mentioned Jump-corner component SJc

u , that is used to fill the holes in the Gauss graph
given by the discontinuity points of the function u.

In Sec. 6, we shall prove some structure properties concerning the class Gcart(U ×SN ), Theorem 6.1.
We shall then see that a current Σ in Gcart preserves the geometry of Gauss graphs, Theorem 6.3.
More precisely, when the first component x of the tangent vector to Σ at a point z = (x, y) ∈ U × SN

is non zero, then it has to be parallel to (and pointing the same way as) the second component y.
In Sec. 7, we shall extend the energy to general currents, by introducing a lower semicontinuous

functional Σ 7→ E0(Σ) that agrees with the energy functional E(u) when restricted to the Gauss graphs
GGu of smooth functions, see Proposition 7.2. In order to prove the explicit formula (0.6), we will also
write more explicitly the action of our energy functional in the case when Σ = Σu, yielding in general to
the right-hand side of (0.6). In fact, our strategy consists in proving the equality

E(u) = E0(Σu)

for every function u with finite relaxed energy.
In Sec. 8, we shall in fact prove the energy lower and upper bounds (“≥” and “≤” in the equality

above), Theorems 8.1 and 8.5. To prove Theorem 8.1 we will show that among all currents in Gcart(U ×
SN ) with underlying function given by u, the optimal one in terms of energy is our generalized Gauss
graph Σu. To this purpose, we shall make use of an average formula of the total curvature proved by
Sullivan [21, Prop. 4.1] that goes back to Fáry [11], see Proposition 1.4.

Instead, to prove the upper bound “≤”, we show that a density property holds for the Gauss graph
Σu, taking advantage of the geometric equality (0.4) for continuous functions.

Finally, in Sec. 9, we prove the representations (0.5), (0.6) and (0.7), see Theorems 9.2 and 9.5.

1 Notation and preliminary results

In this section we recall some features concerning the total curvature of curves, and we restrict to the
subclass of Cartesian curves, introducing our model energy.

Curvature of curves. Let n ≥ 2 and I := [a, b] ⊂ R denote a non-trivial closed interval. A
function c : [a, b] → Rn of class C2 is said to be a regular curve in Rn if the first derivative vector ċ(t)
is non-zero everywhere on I.

The unit tangent vector and the curvature are respectively given by

tc(t) =
ċ(t)

|ċ(t)| , kc(t) :=
area[ċ(t), c̈(t)]

|ċ(t)|3 (1.1)

where we have denoted by area[ċ, c̈] the area of the (possibly degenerate) parallelogram in Rn spanned
by ċ, c̈. Therefore, we have area[ċ, c̈] = | det[ċ, c̈]| for n = 2, and area[ċ, c̈] = |ċ× c̈| for n = 3.

Referring to [15] for the notion of intermediate curvatures and of torsion (the last curvature), we recall
that the (first) curvature does not depend on the parameterization of c(t).

Curvature functionals. By the above, one may consider curvature functionals depending on
the curvature as follows.

Let f : Rn ×Rn ×R → [0,+∞] be a sufficiently smooth integrand that is positively homogeneous of
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degree one in the second entry, i.e.,

f(c, λċ, k) = λ f(c, ċ, k) ∀ (c, ċ, k) ∈ R
n × R

n × R , ∀λ > 0 .

To each regular curve c : [a, b] → Rn we may associate the curvature functional

F(c) :=

∫ b

a

f(c(t), ċ(t),kc(t)) dt .

It is readily checked that the definition does not depend on the parameterization. Moreover, the above
functional does not depend on the orientation if in addition we assume that

f(c,−ċ, k) = f(c, ċ, k) ∀ (c, ċ, k) ∈ R
n × R

n × R .

Example 1.1 Consider for simplicity the curvature functional

F(c) :=

∫ 1

−1

|ċ(t)| (λ1 + λ2 g(kc(t))) dt , λ1, λ2 ∈ R
+ (1.2)

where g : R → R is a non-negative Lipschitz function such that g(0) = 0 and the limit

g∞ := lim
t→+∞

g(t)

t
(1.3)

exists and is finite. The recession g∞ of g comes into the play in case of occurrence of angles.
In fact, let 0 < α < π/4 and cα : [−1, 1] → R2 be the piecewise affine curve with a turning angle of

width 2α at the origin, given by

cα(t) :=





(t, 0) if t < 0
(t,mα · t)√
1 +m2

α

if t ≥ 0
mα := tan(2α) .

This function is not of class C2, so the functional F is not defined on c. But we now see that, in a
relaxed sense,

F(cα) = λ1 · L(cα) + λ2 · 2α · g∞ .

In fact, outside the origin the curvature of cα is zero, and we can approximate cα near the ori-
gin by small regular arcs, as e.g. cα,ε : [−π/2,−π/2 + 2α] → R2 defined by cα,ε(t) := ε (− sinα +
cosα cos t, cosα + cosα sin t). We thus have |ċα,ε(t)| = ε cosα and det [ċα,ε(t)|c̈α,ε(t)] = ε2 cos2 α, so
that ∫ −π/2+2α

−π/2

|ċα,ε(t)| g
( | det[ċα,ε(t)|c̈α,ε(t)]|

|ċα,ε(t)|3
)
dt = 2α ε cosα g((ε cosα)−1)

and hence F(cα,ε) → λ1 · L(cα) + λ2 · 2α · g∞ as ε→ 0+.
In Figure 1 we have divided the graph curve (c(t),kc(t)) by drawing on the left side the image of c(t)

and on the right the graph (t,kc(t)) of the unit tangent vector. This example shows that the relaxed
formula of the curvature functional must in general contain an angle term reminding of the regular version.

Total curvature. The total curvature TC(c) of a curve c in Rn has been defined by Milnor [19]
as the supremum of the total curvature of the polygons P inscribed in c. For a polygon P , the total
curvature is the sum of the turning angles between consecutive segments. As for the length, we thus have

L(c) := sup{L(P ) | P inscribed in c} ,
TC(c) := sup{TC(P ) | P inscribed in c} . (1.4)

Proposition 1.2 If {Ph} is a sequence of polygons inscribed in c such that mesh(Ph) → 0, then
L(Ph) → L(P ) and TC(Ph) → TC(c).
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t

u
(0,1)

(1,0)

t

Figure 1: The curve cα (dashed) and the smooth approximation of cα,ε.
On the right: the graph (t,kc(t)) of the corresponding unit tangent vector.

A curve c with finite total curvature, say c ∈ FTC(Rn), is rectifiable, L(c) <∞, and hence it admits
a Lipschitz parameterization c : [a, b] → Rn. Since Lipschitz functions are differentiable a.e., it is well
defined the tantrix (or tangent indicatrix), that assigns to a.e. point the oriented unit tangent vector
tc ∈ Sn−1. Moreover, see Sullivan [21], one has

Proposition 1.3 The total curvature of c agrees with the essential total variation of the tantrix, whence
c ∈ FTC(Rn) if and only if the tantrix tc ∈ BV ([a, b], Sn−1).

Total curvature and projections. The total curvature of a curve does not give an uniform
bound on the total curvature of its orthogonal projections. Taking e.g. the curve in R3

c : z = x2 , y = 0 , |x| ≤ 1/2

one has TC(c) = π/2. However, the total curvature of its projection on the plane z = 0 is zero, the
projected curve being a straight segment, whereas the total curvature of its projection on the plane x = 0
is equal to π, the projected curve this time being a segment bent backwards. This remains equal to π
even if we restrict to |x| ≤ ε, in which case TC(c) goes to zero with ε.

Notwithstanding, following Sullivan [21], the total curvature of a curve is the average of the total
curvatures of all its projections on k-planes, for each k. More precisely, for 1 ≤ k < n integer, we denote
by GkR

n the Grassmannian of k-planes in Rn. It is a compact group, and it can be equipped with a
unique rotationally invariant probability measure µk. For p ∈ GkR

n, we denote by πp the orthogonal
projection of Rn onto p. The following result is proved in [21, Prop. 4.1], and it goes back to Fáry [11].

Proposition 1.4 Given a curve c in Rn, and some fixed integer 1 ≤ k < n, then

TC(c) =

∫

GkR
n

TC(πp(c)) dµk(p) .

Cartesian curves. In this paper we shall focus on the action of curvature functionals as in (1.2) on
the subclass of Cartesian curves in R

n. More precisely, we let N = n−1 ≥ 1, and consider a C2-function
u : I → RN where I = [a, b], so that the corresponding Cartesian curve is cu : I → RN+1 defined by
cu(t) := (t, u(t)), where u = (u1, . . . , uN) in components. Any smooth Cartesian curve is automatically
regular, as ċu(t) = (1, u̇(t)) for each t. For simplicity of notation we shall correspondingly denote by τu
and ku the tantrix tcu and curvature kcu of a Cartesian curve, respectively. We thus have

τu =
ċu
|ċu|

, ċu = (1, u̇1, . . . , u̇N ) , |ċu| =
√
1 + |u̇|2 .
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t

u
(0,1)

(1,0)

t

Figure 2: The curve c (dashed) and the smooth approximation of cuh
.

On the right: the corresponding curves in the (t, τ)-space.

In codimension N = 1, i.e. for cu(t) = (t, u(t)) : I → R2, the curvature of cu at the point cu(t) is

ku(t) =
|ü(t)|

(
1 + u̇(t)2

)3/2 (1.5)

so that |ċu(t)| ku(t) = |v̇(t)|, where v(t) := arctan u̇(t). In higher codimension N ≥ 2, denoting by v1•v2
the scalar product of vectors, we obtain:

area[ċu, c̈u]
2 = |ċu ∧ c̈u|2 = |ü|2(1 + |u̇|2)− (u̇ • ü)2 ,

whence for cu(t) = (t, u(t)) : I → RN+1 the curvature at the point cu(t) is

ku(t) =

(
|ü|2(1 + |u̇|2)− (u̇ • ü)2

)1/2

(1 + |u̇|2)3/2 . (1.6)

Example 1.5 Let cuh
: [−1, 1] → R2 be the piecewise affine Cartesian curve cuh

(t) = (t, uh(t)), where

uh(t) :=





0 if t < −π/h
ht+ π if − π/h ≤ t ≤ π/h
2π if t > π/h

h ∈ N
+ large , (1.7)

so that cuh
has two corners with two turning angles both of width arctanh at the points (−π/h, 0) and

(π/h, 2π). With the same notation as in Example 1.1, and in the same relaxed sense since uh /∈ C2,

F(cuh
) :=

∫ 1

−1

|ċuh
(t)| (λ1 + λ2 g(kuh

(t))) dt = λ1 · L(cuh
) + λ2 · 2 arctanh · g∞ ,

so that F(cuh
) → λ1 · (2+2π)+λ2 ·2 ·

π

2
· g∞ as h→ ∞. Although the functions uh converge to a jump

function u, the graphs cuh
converge to a curve c which closes the jump of u with a vertical segment of

length 2π, see Figure 2, and we got in a further relaxed sense

F(c) = λ1 · L(c) + λ2 · g∞ · TC(c) .
We formalize what we learned from the example. Using the notation from Sec. 2 below, we denote

by Guh
:= cuh#[[−1, 1 ]] the 1-current in (−1, 1)×R carried by the graph of uh. It is easy to check that

Guh
weakly converges to the Cartesian current T := c#[[ 0, 2(1 + π) ]] given by the integration of 1-forms

in D1((−1, 1)× R) over the (oriented) limit curve c : [0, 2(1 + π)] → R2

c(s) :=





(s− 1, 0) if 0 ≤ s ≤ 1
(0, s− 1) if 1 < s < 1 + 2π
(s− 2π − 1, 2π) if 1 + 2π ≤ s ≤ 2(1 + π) .

(1.8)
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The above computation suggests to define a suitable functional F0 in the corresponding class of 1-
dimensional Cartesian currents so that F0(Gu) = F(cu) for currents Gu carried by the graph of smooth
functions, and in our example

F0(T ) = λ1 ·M(T ) + λ2 · 2 ·
π

2
· g∞ , M(T ) = L(c) = 2(1 + π) . (1.9)

This will be shown in Examples 6.2 and 7.7 below.

The energy functional. In the sequel we shall consider the curvature functional (1.2) where
g(k) := k and for simplicity λ1 = λ2 = 1. Therefore, the recession function (1.3) is g∞ = 1. For
C2-functions u : I → RN we thus let

E(u) := F(cu) =

∫

I

|ċu(t)| (1 + ku(t)) dt . (1.10)

Therefore, in codimension N = 1 our functional becomes

E(u) =
∫

I

√
1 + u̇2 dt+

∫

I

|ü(t)|
1 + u̇(t)2

dt .

In higher codimension N ≥ 2 we obtain:

E(u) =
∫

I

√
1 + |u̇|2 dt+

∫

I

(
|ü|2(1 + |u̇|2)− (u̇ • ü)2

)1/2

1 + |u̇|2 dt .

The relaxed energy. As we shall see below as a byproduct of Proposition 7.2, the following lower
semicontinuity property holds:

Proposition 1.6 If a sequence {uh} ⊂ C2(I,RN ) converges in L1 to some function u ∈ C2(I,RN ),
then E(u) ≤ lim infh E(uh) .

The functional u 7→ E(u) is well defined on Sobolev functions u ∈ W 2,1(I,RN ), where this time u̇
and ü denote the approximate first and second derivatives. We wish to extend it to the wider class of
functions in L1(I,RN ) in order to obtain a lower semicontinuous functional u 7→ E(u) that agrees with
E(u) for C2 and W 2,1 functions.

For this reason, we are interested in studying the relaxed energy w.r.t. the L1-convergence:

E(u) := inf
{
lim inf
h→∞

E(uh) | {uh} ⊂ C2(I,RN ) , uh → u in L1(I,RN )
}
. (1.11)

2 1d Cartesian currents and BV-functions

If u : I → RN has finite relaxed energy (1.11), then there exists a sequence {uh} ⊂ C2(I,RN ) of smooth
functions such that uh → u in L1(I,RN ) and suph ‖u̇h‖L1(I,RN ) < ∞. Therefore, u is a function of
bounded variation. Moreover, possibly passing to a subsequence the graphs of the functions uh weakly
converge (in the sense of currents) to a Cartesian current T ∈ cart(I̊ × RN ). For this reason, in this
section we collect some notation and basic properties, and we refer to [2] and [13] for further results
concerning functions of bounded variation and Geometric Measure Theory, respectively.

BV -functions. For any f : I → R
N and t ∈ I, we set

f(t+) := lim
s→t+

f(s) , f(t−) := lim
s→t−

f(s)

whenever the above one-sided limits exist. It will sometimes be typographically convenient to denote by
f± the functions t 7→ f(t±).
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A function u : I → RN is in BV (I,RN ) if all its components uj are functions in L1(I) whose
distributional derivative Duj is a finite measure. If u ∈ BV (I,RN ), the functions u± are defined
everywhere and each of them may be used as a precise representative of u. For every t ∈ I we have

lim
ε→0+

1

ε

∫ t

t−ε

|u(s)− u−(t)| ds = 0 , lim
ε→0+

1

ε

∫ t+ε

t

|u(s)− u+(t)| ds = 0 .

The Jump set of u is the at most countable set Ju of discontinuity points of u. If t ∈ Ju, we denote
the Jump of u at t by [u(t)] := u(t+) − u(t−). The distributional derivative Du = (Du1, . . . , DuN)
is a vector-valued measure that splits into three mutually singular terms, the “gradient” part, which
is absolutely continuous with respect to the Lebesgue measure, the “jump” part, which is atomic, and
the “Cantor-type” part. More precisely, one has Du = Dau + Dsu, where Dau = u̇L1, the vector
u̇ = (u̇1, . . . , u̇N ) being the approximate gradient of u. The singular part splits as Dsu = DJu +DCu,
where

DJu = [u]H0 Ju , DCu = Dsu (I \ Ju) .
Also, a sequence {uh} is said to converge to u weakly in the BV -sense, uh ⇀ u, if uh → u strongly in
L1 and Duh ⇀ Du weakly in the sense of (vector-valued) measures.

Remark 2.1 If u ∈ BV (I,RN ), then also cu ∈ BV (I,RN+1), and one has

cu(t±) = (t, u(t±)) , ċu = (1, u̇) , DCcu = (0, DCu) , DJcu = (0, DJu) .

As a consequence, one infers that

|Dcu|(I) =
∫

I

|ċu| dt+ |DCu|(I) + |DJu|(I)

where, we recall,
∫

I

|ċu| dt =
∫

I

√
1 + |u̇|2 dt , |DJu|(I) =

∑

t∈Ju

|[u(t)]| =
∑

t∈Ju

|[cu(t)]| .

Graph currents. The sequence {uh} in Example 1.5 converges in L1 (and weakly in the BV -
sense) to a jump function, whose graph has a “hole”. However, the graphs cuh

converge to the curve
(1.8) which “fills the hole” in the limit graph. This fact is described by the weak convergence as currents.

Following [13], in fact, there is a canonical way to associate to any function u ∈ BV (I,RN ) an integer
multiplicity (say i.m.) rectifiable 1-current Tu that fills the holes of the “graph” of u in an optimal way.
The current Tu is decomposed into the absolutely continuous, Cantor, and Jump parts

Tu := T a
u + TC

u + T J
u . (2.1)

The component T a
u agrees with the integration on the “rectifiable graph” of u, the component TC

u

depends on the Cantor part of the derivative, and finally the component T J
u lives on the jump set of u

and is given by the integration along the union of oriented line segments connecting the points cu(t±).
We are forced to give some details. Denoting by U the open set

U := I̊ × R
N , so that U := I × R

N

any form ω ∈ D1(U) splits as ω = ω(0) + ω(1) according to the number of vertical differentials, i.e.

ω(0) = φ(t, z) dt and ω(1) =
N∑

j=1

φj(t, z) dzj (2.2)

for some φ, φj ∈ C∞
c (U). According to Remark 2.1, we define

〈T a
u , ω

(0)〉 :=
∫

I

φ(cu(t)) dt , 〈TC
u , ω

(0)〉 := 0 , 〈T J
u , ω

(0)〉 := 0 . (2.3)
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Moreover, taking e.g. cu+(t) = cu(t+) as a precise representative of cu, we set

〈T a
u , ω

(1)〉 :=

N∑

j=1

∫

I

φj(cu(t)) u̇
j(t) dt

〈TC
u , ω

(1)〉 :=

N∑

j=1

〈DCuj, φj ◦ cu+〉

〈T J
u , ω

(1)〉 :=

N∑

j=1

∑

t∈Ju

∫

γt

φj(t, z) dzj .

(2.4)

In the third formula, for each t ∈ Ju we have denoted by γt = γt(u) the oriented line segment in {t}×RN

with end points cu(t±), so that

∂[[ γt ]] = δcu(t+) − δcu(t−) and H1(γt) = |cu(t+)− cu(t−)| = |[u(t)]| ,
where δP denotes the unit Dirac mass at the point P . We also remark that the precise representative
in the second formula is only formal, since cu+ = cu− = cu on the support of DCcu.

It turns out that Tu is an integer multiplicity (say i.m.) rectifiable 1-current in R1(U), satisfying
the null-boundary condition ∂Tu = 0, i.e.

〈∂Tu, f〉 := 〈Tu, df〉 = 0 ∀ f ∈ C∞
c (U) . (2.5)

In fact, according to Remark 2.1 we have

〈T a
u + TC

u , df〉 =
∫

I

∇f(cu) • ċu dt+
∫

I

∇f(cu+) • dDCcu

whereas

〈T J
u , df〉 =

∑

t∈Ju

∫

γt

df =
∑

t∈Ju

(
f(cu(t+))− f(cu(t−))

)
.

Therefore, using that
∫
I
D(f ◦ cu) = 0, as the function f ◦ cu ∈ BV (I) has support contained in I̊, and

recalling that by the chain rule formula

D(f ◦ cu) = ∇f(cu) • ċu L1 +∇f(cu+) •DCcu +
(
f(cu+)− f(cu−)

)
H0 Ju

one obtains the null-boundary condition (2.5).
Finally, the mass of Tu is finite and splits as M(Tu) = M(T a

u ) +M(TC
u ) +M(T J

u ), where

M(T a
u ) =

∫

I

|ċu| dt , M(TC
u ) = |DCu|(I) , M(T J

u ) = |DJu|(I) =
∑

t∈Ju

|[u(t)]| ,

so that clearly |Du|(I) ≤ M(Tu) <∞ and actually M(Tu) = |Dcu|(I).
Remark 2.2 By the area formula one obtains that T a

u = Gu, where the graph-current Gu is given by
integration of 1-forms ω over the rectifiable graph Gu.

More precisely, following [13] we denote Gu := {(t, u(t)) | t ∈ Ru}, where Ru is the set of Lebesgue
points of both u and u̇ and u(t) is the Lebesgue value of u at t. The set Ru ⊂ I has full L1-measure,
|Ru| = |I|. Also, Gu is a countably 1-rectifiable set, oriented a.e. by τu(t) := ċu(t)/|ċu(t)|, which in the
smooth case is the tantrix of the curve cu. We thus have

〈Gu, ω〉 :=
∫

Gu

〈ω, τu〉 dH1 , ω ∈ D1(U)

and hence by the area formula one obtains that Gu = cu#
[[ I ]], i.e., 〈Gu, ω〉 =

∫
I c

#
u ω for every ω ∈

D1(U), where the pull-back is computed in terms of the approximate gradient u̇, so that according to
the notation from (2.2) one has

c#u ω
(0) = φ(cu(t)) dt and c#u ω

(1) =

N∑

j=1

φj(cu(t)) u̇
j dt .
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In particular, the mass of Gu agrees with the length of the rectifiable graph of u, i.e. M(Gu) = H1(Gu).
If u ∈ BV (I,RN ) is continuous, one has T J

u = 0. Moreover, if u is a Sobolev function in W 1,1(I,RN )
one has TC

u = T J
u = 0 and hence Tu = Gu. Finally, in codimension N = 1, the current Tu agrees with

the boundary of the current carried by the subgraph of u, compare [13] and Remark 2.5 below.

Using a convolution argument, one also obtains for every u ∈ BV (I,RN ) :

Proposition 2.3 There exists a sequence of smooth functions {uh} ⊂ C∞(I,RN ) such that uh ⇀ u
weakly in the BV -sense, Guh

⇀ Tu weakly in D1(U),1 and M(Guh
) → M(Tu) as h→ ∞.

Cartesian currents. We now consider the class of 1-currents T in D1(U) that are weak limit
points of sequences {Guh

} of graphs of smooth functions uh : I → RN with equibounded W 1,1-norms.

Any such current T belongs to the class cart(I̊ × RN ), see [13, 14]. By Federer-Fleming’s closure
theorem, the current T is an i.m. rectifiable current in R1(U), with finite mass, M(T ) < ∞, and it
satisfies the null boundary condition ∂T = 0, compare (2.5). Moreover, denoting by u = uT ∈ BV (I,RN )
the weak BV -limit of the corresponding subsequence {uh}, similarly to (2.1) the current T can be
decomposed into four terms:

T = T a
u + TC

u + T J + T s .

The first two terms have already been defined and only depend on the underlying function u = uT ,
whereas both the Jump and singular components T J and T s are “vertical”, i.e., according to (2.2) and
(2.3), one has

〈T, ω(0)〉 = 〈T a
u , ω

(0)〉 = 〈Gu, ω
(0)〉 =

∫

I

φ(cu(t)) dt .

The extra singular term T s is necessary, as the ensuing well-known Example 2.4 shows.
The Jump component T J is defined as in the third line of (2.4), where this time γt = γt(T ) is an

oriented rectifiable arc in {t} × RN with length L(γt(T )) and end points given by the one sided limits
cu(t±), so that we again have ∂[[ γt(T ) ]] = δcu(t+) − δcu(t−).

Arguing as for (2.5), one then obtains the null-boundary condition

∂(T a
u + TC

u + T J) = 0 .

As a consequence, the fourth term T s is a (vertical) i.m. rectifiable current such that ∂T s = 0. Moreover,
the above structure property implies a decomposition in mass, i.e.

M(T ) = M(T a
u ) +M(TC

u ) +M(T J) +M(T s)

where, we recall,

M(T a
u ) =

∫

I

|ċu| dt , M(TC
u ) = |DCu|(I) , M(T J) =

∑

t∈Ju

M([[ γt(T ) ]]) .

In particular one again has |Dcu|(I) ≤ M(T ) <∞. Moreover, in the above decomposition we may and do
assume that for every t ∈ Ju the current [[ γt(T ) ]] is a-cyclical, or indecomposable. Therefore, a density
property similar to Proposition 2.3 holds true for each current T ∈ cart(I̊ × RN ) such that T s = 0.

Example 2.4 Let I = [−π, 3π] and consider the sequence of functions from I into S1 ⊂ R2

uh(t) :=

{
(cosht, sinht) if t ∈ [0, 2π/h]
(1, 0) elsewhere

so that we have
∫

I

|u̇h(t)| dt = 2π , L(cuh
) =

∫

I

|ċuh
(t)| dt = 2π

(
2− 1

h
+

√
1 + h2

h

)
.

1The weak convergence Th ⇀ T as currents in D1(U) is defined by duality as

〈Th, ω〉 → 〈T, ω〉 ∀ω ∈ D1(U) .
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Moreover uh ⇀ u∞ weakly in the BV -sense, where u∞(t) ≡ (1, 0), but the degree

deg uh = 1 ∀h , deg u∞ = 0

and ∫

I

|u̇∞(t)| dt = 0 < 2π = lim
h→∞

∫

I

|u̇h(t)| dt ,
L(cu∞

) = 4π < 6π = lim
h→∞

L(cuh
) ,

whence the weak BV convergence fails to preserve the geometry and to read the energy concentration.
On the other hand, the graphs Guh

weakly converge to the Cartesian current T = Gu∞
+ T s, where

Gu∞
= [[−π, 3π ]]× δ(1,0) and the singular term T s = δ0 × [[ S1 ]] is a vertical 1-cycle. The total variation

and degree can be defined on T in such a way that

total variation T = 2π , deg T = 1 , M(T ) = 6π .

Therefore, one recovers concentration and loss of geometry from the limit of graphs.

Remark 2.5 For any u ∈ BV (I,RN ), the current Tu belongs to the class cart(I̊ ×RN). Moreover, the
mass of Tu is lower than (or equal to) the mass of any Cartesian current T with underlying function
uT = u. Finally, in codimension N = 1 one has cart(I̊ × R) = {Tu | u ∈ BV (I,R)}, and Tu actually
agrees (up to the sign) with the boundary of the 2-current naturally associated to the subgraph of u in
I̊ × R.

3 Gauss graphs of smooth Cartesian curves

Our approach to the relaxation problem makes use of some features from the theory of Gauss graphs
re-written in the context of Cartesian curves. Some ideas are therefore taken from [3], see also [9].

We first recall that for a smooth rectifiable 1-1 curve with support C ⊂ RN+1
x , the Gauss graph can

be viewed as the graph in R
N+1
x × S

N of the unit tangent vector tC(x) ∈ S
N ⊂ R

N+1
y at x ∈ C, i.e.,

MC := {(x, tC(x)) | x ∈ C} ,

and an i.m. rectifiable current is naturally associated to MC . In the sequel we shall then denote by
(e0, e1, . . . , eN) and (ε0, ε1, . . . , εN) the canonical basis in RN+1

x and RN+1
y , respectively.

Assume that cu is a smooth Cartesian curve defined as the graph of a C2-function u : I → RN , so
that C = {(t, u(t)) | t ∈ I} and tC(x) = τu(t) if x = cu(t). We thus introduce the map Φu : I → U ×S

N

Φu(t) := (cu(t), τu(t)) , t ∈ I

where

cu(t) := (t, u(t)) = t e0 +
N∑

j=1

uj(t) ej , τu(t) :=
1√

1 + |u̇(t)|2
(
ε0 +

N∑

j=1

u̇j(t) εj

)
. (3.1)

Therefore, the Gauss graph associated to cu is identified by

GGu := {Φu(t) | t ∈ I} , GGu ⊂ U × S
N .

Moreover, the set GGu is the support of the curve Φu, it is 1-rectifiable and naturally oriented by the
unit vector

ξu(t) :=
Φ̇u(t)

|Φ̇u(t)|
. (3.2)

Remark 3.1 Take a sequence {uh} of smooth functions, and assume that their graphs cuh
converge

weakly as currents to a rectifiable (not necessarily Cartesian) curve c ; for each h the tantrix τuh
has

positive first component τ0uh
, so also for the limit curve c the tantrix has non-negative first component,

i.e. it takes values into the half-sphere

S
N
+ := {y = (y0, y1, . . . , yN) ∈ R

N+1
y : |y| = 1 , y0 ≥ 0} .
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Curvature. Denoting as before by • the scalar product in RN , we compute for each t ∈ I

Φ̇u(t) = e0 +
N∑

j=1

u̇j ej +
−(u̇ • ü)

(1 + |u̇|2)3/2 ε0 +
N∑

j=1

üj(1 + |u̇|2)− u̇j (u̇ • ü)
(1 + |u̇|2)3/2 εj . (3.3)

If N = 1 one has Φ̇u(t) = e0 + u̇ e1 − k̃u u̇ ε0 + k̃u ε1 where k̃u is the signed curvature of cu

k̃u(t) :=
ü(t)

(1 + u̇(t)2)3/2
, (3.4)

so that |k̃u| = ku, compare (1.5), and hence

|Φ̇u(t)| = |ċu(t)|
√
1 + ku(t)

2
, |ċu(t)| =

√
1 + |u̇(t)|2 , |ċu|ku = |τ̇u| . (3.5)

The above formulas (3.5) continue to hold in higher codimension N ≥ 2, where this time the curvature
ku of the Cartesian curve cu is given by (1.6).

Notice that 2−1/2(1 + ku) ≤
√

1 + k2u ≤ (1 + ku). This gives that

2−1/2|ċu| (1 + ku) ≤ |Φ̇u| ≤ |ċu| (1 + ku) . (3.6)

In particular Φ̇u is summable in I if and only if both |u̇| and |ċu| ku are summable. Recalling (1.10),
we thus have for every u ∈ C2(I̊ ,RN )

|Φ̇u| ∈ L1(I) ⇐⇒ E(u) <∞ .

Example 3.2 The length of the Gauss graph is some sort of an average between the length and the
total curvature. Let e.g. N = 2 and uh : [0, 2π/h] → R

2 be given by uh(t) = R(cos(ht), sin(ht)), so
that the curve cuh

parameterizes one turn of the helix of radius R > 0 and step 2π/h. The tantrix τuh

describes a circle in S2+ of radius R(h) = Rh/
√
1 +R2h2 that converges to one as h → ∞. Moreover,

the limit curve cR is a circle of radius R and total curvature 2π. In fact, we have u̇h • üh = 0 and

|Φ̇uh
(t)| =

√
1 +R2h2

√
1 +

R2h4

(1 +R2h2)2
=

√
1 + 2R2h2 + (R2 +R4)h4

1 +R2h2

for every t ∈ [0, 2π/h], so that the limit

lim
h→∞

∫ 2π/h

0

|Φ̇uh
(t)| dt = 2π

√
1 +R2

is equal to the length of the Gauss graph of the curve cR. Since moreover |ċuh
| kuh

= Rh2/
√
1 +R2h2,

then the limit of the total curvature functional gives

lim
h→∞

TC(cuh
) = lim

h→∞

∫ 2π/h

0

|ċuh
| kuh

dt = 2π

that is the total curvature of the limit curve cR.

Cartesian Gauss graphs. If u : I̊ → RN is a C2-function, recalling that U = I̊ × RN , we may
associate to the Gauss graph of the Cartesian curve cu a one-dimensional current GGu ∈ D1(U × SN )
defined by integrating 1-forms on the set GGu, which is naturally oriented by the unit vector ξu defined
in (3.2). Then we have

〈GGu, ω〉 :=
∫

GGu

ω =

∫

GGu

〈ω, ξu〉 dH1 , ω ∈ D1(U × S
N )

and by the Remark 3.1 it turns out that sptGGu ⊂ U × SN+ .
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Moreover, if |Φ̇u| ∈ L1(I), by means of the area formula we compute

〈GGu, ω〉 =
∫

GGu

〈ω, Φ̇u〉 |Φ̇u|−1 dH1 =

∫

I

〈ω(Φu(t)), Φ̇u(t)〉 dt .

Therefore, it turns out that GGu = [[GGu, 1, ξu ]] is an i.m. rectifiable current in R1(U × SN ) with null
interior boundary, ∂GGu = 0, and finite mass:

M(GGu) = H1(GGu) =

∫

I

|Φ̇u(t)| dt <∞ , |Φ̇u| = |ċu|
√
1 + k 2

u .

Remark 3.3 By (3.6), recalling the definition (1.10), for smooth functions u : I̊ → RN we have

2−1/2E(u) ≤ M(GGu) ≤ E(u)

and hence u has finite energy if and only if the corresponding current GGu has finite mass.

4 Functions with finite relaxed energy

In this section we focus on the class of functions with finite relaxed energy (1.11). We shall thus denote:

E(I,RN ) := {u ∈ L1(I,RN ) | E(u) <∞} . (4.1)

We first recall from [8] how the relaxation problem has been solved in the codimension one case. We
then outline the main properties of functions u in E(I,RN ). We shall in particular prove that the Gauss
map τu is of bounded variation, Theorem 4.7.

The case N = 1. In codimension N = 1, the relaxed functional (1.11) has been studied in [8], where
the authors introduce the following notation:

Definition 4.1 The class X(I) is given by the real valued functions u in BV (I) = BV (I,R) satisfying
the following properties:

(a) the function t 7→ arctan(u̇(t)) belongs to BV (I) ;

(b) the positive and negative parts (DCu)± of the Cantor-type component are respectively concentrated
on the sets

Z±[u̇] :=
{
t ∈ I : lim

ε→0+

1

2ε

∫ t+ε

t−ε

u̇(s) ds = ±∞
}
.

Remark 4.2 The class X(I) trivially contains the Sobolev space W 2,1(I). Therefore, a function u ∈
SBV (I) with a finite Jump set, H0(Ju) <∞, belongs to X(I) if it is a pure Jump-function, i.e. u̇ = 0
a.e., or more generally if arctan(u̇) ∈ BV (I). However, in [8] it is shown the existence of functions u in
X(I) with non-trivial Cantor component, DCu 6= 0.

In [8] it is proved that E(I,R) ⊂ X(I). Moreover, compare Corollary 7.9 below, the explicit repre-
sentation of the relaxed functional is given for u ∈ X(I) by

E(u) = |Dcu|(I) + G(u) , (4.2)

where the second term is given by

G(u) := |D arctan(u̇)|(I \ Ju) +
∑

t∈Ju

Φ(νu(t), u̇(t−), u̇(t+)) (4.3)

(here and a few lines below we keep the original notation Φ from [8], which clearly has nothing to do
with our Φ and Φu). For Sobolev functions u ∈ W 2,1(I,R), the functional G(u) agrees with the total
curvature functional ∫

cu

kcu dH1 =

∫

I

|ü(t)|
1 + u̇(t)2

dt , cu(t) = (t, u(t)) .
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In general, the second addendum in the definition of G(u) depends on the sign νu(t) of the jump
[u(t)] := u(t+)− u(t−) and on the left and right limits of u̇ at the Jump point of u

u̇(t−) := lim
ε→0+

1

ε

∫ t

t−ε

u̇(s) ds , u̇(t+) := lim
ε→0+

1

ε

∫ t+ε

t

u̇(s) ds .

Such limits always exist in R at all points t ∈ I provided that u ∈ X(I). In fact, compare [8], we have
u̇ = tan v, where v is a good representative of the BV -function arctan u̇. Finally, the general definition
of Φ(νu(t), u̇(t−), u̇(t+)) from [8], for the case of the curvature functional as in our context, agrees with
the sum of the two turning angles

arccos
( (1, u̇(t±)) • (0, νu(t))

|(1, u̇(t±))|
)
, t ∈ Ju

provided that u̇(t±) ∈ R, and with the obvious extensions in the case |u̇(t±)| = ∞, yielding to the
corresponding terms 0 or π according to the sign of the product u̇(t±) νu(t).

Remark 4.3 If u ∈ X(I), so that v := arctan u̇ ∈ BV (I), setting τu := (1, u̇)/
√
1 + u̇2, then τu =

(cos v, sin v), whence τu ∈ BV (I,R2), and by the chain-rule formula one has |Dτu|(A) = |Dv|(A) for
each Borel set A ⊂ I.

Weak limit currents. Let now N ≥ 1 and u ∈ E(I,RN ). By Remark 3.3, the class E(I,RN )
is characterized by the L1-functions u for which we can find a smooth sequence {uh} ⊂ C2(I,RN ) such
that uh → u in L1 and suph M(GGuh

) <∞. Since uh ⇀ u weakly in BV , we deduce that u ∈ BV , and
hence cu ∈ BV .

Recalling that U := I̊ × RN , the object of our analysis is the subclass of 1-currents in D1(U × SN )
that are weak limits (in the sense of currents) of sequences {GGuh

} of Gauss graphs of smooth Cartesian
curves with equibounded masses. We thus introduce the class Gcart(U × SN ), defined by

Gcart(U × SN ) := {Σ ∈ D1(U × SN ) | ∃{uh} ⊂ C2(I,RN ) such that
GGuh

⇀ Σ in D1(U × SN ) , suph M(GGuh
) <∞} . (4.4)

The structure properties of the class Gcart(U × SN ) we shall analyze here and in more detail in
Sec. 6, are inherited (by weak convergence with equibounded masses) from the corresponding properties
of the approximating currents GGuh

. To this purpose, we shall denote by Πx and Πy the canonical
projections of RN+1

x × RN+1
y onto the first and second factor.

Proposition 4.4 Let Σ ∈ Gcart(U × SN ) and let {uh} ⊂ C2(I,RN ) be such that suph M(GGuh
) <∞

and GGuh
⇀ Σ weakly in D1(U × SN ). Then we have:

i) The current Σ is i.m. rectifiable in R1(U × SN ), with finite mass

M(Σ) ≤ lim inf
h→∞

M(GGuh
) <∞

and it satisfies the null-boundary condition ∂Σ = 0 .

ii) The sequence {uh} weakly converges in the BV -sense to some function u ∈ BV (I,RN ) .

iii) The projection T = T (Σ) := Πx#Σ is a Cartesian current in cart(I̊ × RN ), see Sec. 2, with
underlying function uT = u .

Proof: Property i) follows from the classical Federer-Fleming’s closure theorem, observing that the null-
boundary condition ∂GGuh

= 0 is preserved by the weak convergence. Moreover, we have Πx#GGuh
=

Guh
, where Guh

∈ R1(I̊×RN ) is the graph current associated to the Cartesian curve cuh
(t) = (t, uh(t)),

and the following mass bound holds:

M(Guh
) =

∫

I

|ċuh
| dt ≤

∫

I

|ċuh
|
√
1 + k 2

uh
dt = M(GGuh

) (4.5)



Proc. Royal Soc. Edinburgh, Section: A Mathematics. To appear (2016 ?) 16

where, we recall, |ċuh
| :=

√
1 + |u̇h|2. By the closure property of the class cart(I̊ × RN) it turns out

that Guh
, which we already know to converge to the current Πx#Σ, weakly converges in D1(U) to some

Cartesian current T ∈ cart(I̊×RN), and uh ⇀ uT weakly in the BV -sense. Properties ii) and iii) readily
follow. �

Good parameterizations. Motivated by the construction from Example 1.5, we now choose a
suitable parameterization of currents in the class Gcart(U × SN ).

Proposition 4.5 Let Σ ∈ Gcart(U × SN ) and T (Σ) := Πx#Σ ∈ cart(I̊ × RN ). Let {uh} ⊂ C2(I,RN )
such that GGuh

⇀ Σ weakly in D1(U × SN ) and suph M(GGuh
) < ∞. Then there exist a number

L ≥ |I|, and a Lipschitz function c : IL → U , where IL := [0, L], satisfying the following properties:

i) the first component c0 of c is a non-decreasing and surjective function c0 : IL → I ;

ii) the image current c#[[ IL ]] agrees with the Cartesian current T (Σ) = Πx#Σ ;

iii) the gradient s 7→ ċ(s) is a function with bounded variation in BV (IL,R
N+1), with |ċ| = 1 a.e. in

IL ;

iv) setting Φ(s) := (c(s), ċ(s)), then

|DΦ|(IL) ≤ lim inf
h→∞

∫

I

|Φ̇uh
(t)| dt and |Dc|(IL) + |Dċ|(IL) ≤ lim inf

h→∞
E(uh) .

Proof: Denoting Lh :=
∫
I
|ċuh

(t)| dt, since Lh = M(Guh
) by (4.5) we have |I| ≤ infh Lh ≤ suph Lh ≤

K <∞, and possibly passing to a subsequence we may assume that Lh → L ∈ [|I|,K].
Recalling that cuh

(t) = (t, uh(t)) and that I = [a, b], for every h denote by ψh : I → IL the
transition function

ψh(t) :=
L

Lh

∫ t

a

|ċuh
(λ)| dλ

so that ψ̇h(t) = (L/Lh)|ċuh
(t)| ≥ (L/Lh) for every t ∈ I. The inverse function

ϕh : IL → I (4.6)

is a smooth diffeomorphism such that 0 < ϕ̇h(s) ≤ Lh/L for every s ∈ IL. The corresponding smooth
function ch(s) := cuh

(ϕh(s)) : IL → U has constant velocity |ċh(s)| ≡ Lh/L, with a strictly increasing
and bijective first component c0h = ϕh : IL → I.

Define Φh(s) := Φuh
(ϕh(s)) = (ch(s), τuh

(ϕh(s))), so that Φh : IL → U × S
N
+ . By the change of

variable t = ϕh(s) one infers that Φh#[[ IL ]] = GGuh
and ch#[[ IL ]] = Guh

. By Ascoli’s theorem,
possibly passing to a subsequence we infer that the sequence {ch} uniformly converges in IL to a
Lipschitz function c ∈ Lip(IL, U). In particular, the transition functions ϕh uniformly converge to
the first component c0 of c, and property i) holds. Using that suph ‖ϕ̇h‖∞ < ∞, we also deduce
that ϕh ⇀ c0 weakly-* in W 1,∞. Since moreover Guh

⇀ T (Σ), and by the uniform convergence also
ch#[[ IL ]]⇀ c#[[ IL ]], we obtain property ii).

The function c being Lipschitz-continuous, by Rademacher’s theorem it is differentiable a.e. in IL.
Its distributional derivative is given by Dc = ċ dt, hence ċ ∈ L∞(IL,R

N+1). Also, by the uniform
convergence of the Lipschitz functions ch to c and since Lh/L→ 1, it turns out that ‖ċ‖∞ ≤ 1.

Now, we have

τuh
(ϕh(s)) =

ċh(s)

|ċh(s)|
=

L

Lh
ċh(s) (4.7)

so that
L

Lh
c̈h(s) = D(τuh

◦ ϕh)(s) = τ̇uh
(ϕh(s)) ϕ̇h(s)

for each s ∈ IL, whence by (3.5)

L

Lh

∫

IL

|c̈h(s)| ds =
∫

IL

|D(τuh
◦ ϕh)(s)| ds =

∫

I

|τ̇uh
(t)| dt ≤ E(uh)
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for every h. Since suph E(uh) <∞, see Remark 3.3, we infer that a subsequence of {ċh} weakly converges
in the BV -sense to some function v ∈ BV (IL,R

N+1).
We claim that v = ċ a.e. in IL, which entails that the whole sequence ċh converges to ċ,

ċh ⇀ ċ weakly in BV (IL,R
N+1) . (4.8)

In fact, still denoting by ch the subsequence, setting V (t) := c(0) +
∫ t

0 v(s) ds, and recalling that

ch(t) = ch(0) +
∫ t

0
ċh(s) ds, by the pointwise convergence ch(0) → c(0) and the weak BV convergence

ċh ⇀ v, which implies strong L1-convergence, we have ch → V in L∞, hence ċh ⇀ V̇ = v. But we
already know that ch → c in L∞, thus v = ċ.

The weak BV -convergence of ċh to ċ implies the strong convergence in L1, thus

L = lim
h→∞

Lh = lim
h→∞

∫

IL

|ċh(s)| ds =
∫

IL

|ċ(s)| ds .

Using that ‖ċ‖∞ ≤ 1, this yields that |ċ| = 1 a.e. in IL, and hence property iii) holds true.
Finally, by (4.7) the sequence {τuh

◦ϕh} weakly converges in the BV -sense to ċ, too. By the change
of variables t = ϕh(s) we check

∫

IL

|Φ̇h(s)| ds =
∫

I

|Φ̇uh
(t)| dt ,

∫

IL

(
|ċh(s)|+ |D(τuh

◦ ϕh)(s)|
)
ds =

∫

I

(
|ċuh

(t)|+ |τ̇uh
(t)|

)
dt ,

whence property iv) follows from lower semicontinuity, on account of (3.5). �

Remark 4.6 In order to prove the geometric property from Theorem 6.3 and the energy lower bound,
see Proposition 8.2 below, we now modify the above argument to recover the weak limit current Σ ∈
Gcart(U ×SN ). In fact, in Proposition 4.5 we are not claiming that the image current (c, ċ)#[[ IL ]] agrees
with Σ. For N = 1, this will be shown in Example 6.2 below, working on Example 1.5.

For this purpose, we have to consider a transition function depending on the whole derivative |Φ̇uh
|.

More precisely, denoting L̃h :=
∫
I |Φ̇uh

(t)| dt, so that L̃h = E(uh) ≤ K̃ for some real constant K̃,

possibly passing to a subsequence L̃h → L̃ ∈ [|I|, K̃]. Denoting by ψ̃h : I → IL̃ the transition function

ψ̃h(t) :=
L̃

L̃h

∫ t

a

|Φ̇uh
(λ)| dλ ,

the inverse function ϕ̃h : IL̃ → I is again a smooth diffeomorphism. Consider the corresponding smooth

function Ψh(s) := Φuh
(ϕ̃h(s)) = (cuh

(ϕ̃h(s)), τuh
(ϕ̃h(s))), so that Ψh : IL̃ → U × SN . The function Ψh

has again constant velocity equal to L̃h/L̃, and by the change of variable t = ϕ̃h(s) one recovers that
Ψh#[[ IL̃ ]] = GGuh

. This time, by Ascoli’s theorem, possibly passing to a subsequence we have that {Ψh}
uniformly converges in IL̃ to a Lipschitz function Ψ ∈ Lip(IL̃, U × SN ), so that Ψh#[[ IL̃ ]] ⇀ Ψ#[[ IL̃ ]].
Since we know that GGuh

⇀ Σ, we obtain that the image current Ψ#[[ IL̃ ]] agrees with Σ.

BV -property of the Gauss map. Let now u ∈ E(I,RN ) and let Φu(t) := (cu(t), τu(t)) be
defined a.e. as in the smooth case, see (3.1), but in terms of the approximate gradient u̇ of the BV -
function u. We already know that cu ∈ BV (I, U). On account of the previous parameterization, we now
prove that also the Gauss map τu : I → SN+ is a function with bounded variation, compare Remark 4.3.

Theorem 4.7 Let N ≥ 1 and u ∈ E(I,RN ). Let {uh} ⊂ C2(I,RN ) such that uh → u in L1 and
suph E(uh) <∞. Then we have:

i) the function t 7→ Φu(t) belongs to BV (I, U × SN ) ;

ii) possibly passing to a subsequence {Φuh
} converges weakly in the BV -sense to the function Φu(t);
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iii) by lower semicontinuity, |DΦu|(I) ≤ lim infh
∫
I
|Φ̇uh

(t)| dt .

Proof: Property iii) is a consequence of ii). Since suph M(GGuh
) < ∞, see Remark 3.3, possibly

passing to a subsequence we infer by (4.4) that GGuh
⇀ Σ weakly in D1(U × SN ) to some current

Σ ∈ Gcart(U ×SN ), and setting T = T (Σ) := Πx#Σ ∈ cart(I̊×RN), by Proposition 4.4 we have uT = u.
We consider the corresponding Lipschitz function c : IL → U given by Proposition 4.5. The image

current c#[[ IL ]] is oriented at H1-a.e. point c(s) in its support by the unit tangent vector ċ(s). Denote

ĨL := {s ∈ IL | ċ0(s) > 0} . (4.9)

The first component c0(s) being non-decreasing, by changing variable t = c0(s) and using that |ċ| = 1
a.e. we obtain

|ĨL| ≥
∫

ĨL

ċ0(s) ds = |I| .

Therefore, the set ĨL has positive measure, and it identifies H1-essentially the set of points in the support
of the image current c#[[ IL ]] where the unit tangent vector is “non-vertical”. In fact, for L1-a.e. s ∈ ĨL
the vector space generated by ċ(s) has projection on the first coordinate of rank one.

In a similar way, recalling the notation collected in Sec. 2, we observe that the set of points in the
support of the Cartesian current T (Σ) where the unit tangent vector is “non-vertical” is identified H1-a.e.
by the rectifiable graph Gu, see Remark 2.2. Moreover, at H1-a.e. such points cu(t) ∈ Gu the orientation
is provided by the unit vector τu(t) = ċu(t)/|ċu(t)|.

Since we know that c#[[ IL ]] = T (Σ), by the previous facts we deduce that (up to H1-null sets) the

restriction of the first component t = c0(s) to the set ĨL establishes a 1-1 correspondence with the set
Ru of the Lebesgue points of both u and u̇. In particular we have

ċ(s) = τu(c
0(s)) for L1-a.e. s ∈ ĨL (4.10)

and by the change of variable t = c0(s) we deduce that for every bounded and smooth function g ∈
C∞

b (I,RN+1) ∫

I

τu(t) • g(t) dt =
∫

Ru

τu(t) • g(t) dt =
∫

ĨL

ċ(s) • g(c0(s)) ċ0(s) ds . (4.11)

We are now ready to prove that (up to a subsequence) the sequence {τuh
} converges weakly in the

BV -sense to τu. In fact, since
∫
I |τ̇uh

(t)| dt ≤ E(uh), we may assume that τuh
⇀ w weakly to some

w ∈ BV (I,RN+1). We first show that for every bounded and smooth function φ ∈ C∞
b (I,RN+1) such

that φ(a) = φ(b) = 0 ∫

I

w(t) • φ̇(t) dt =
∫

I

τu(t) • φ̇(t) dt . (4.12)

In fact, by (4.11) we have

∫

I

τu(t) • φ̇(t) dt =
∫

ĨL

ċ(s) • φ̇(c0(s)) ċ0(s) ds .

Recalling (4.6) and setting φh(s) := φ ◦ ϕh(s), we also infer that φh → φ ◦ c0 uniformly in IL, and
φ̇h(s) = φ̇(ϕh(s)) ϕ̇h(s). Moreover, we know that τuh

(ϕh(s)) = ċh(s)/|ċh(s)|, with |ċh(s)| ≡ Lh/L → 1.
By changing variable t = ϕh(s), and by the weak convergence of ċh to ċ, see (4.8), we compute

∫

I

w(t) • φ̇(t) dt = lim
h→∞

∫

I

τuh
(t) • φ̇(t) dt = lim

h→∞

L

Lh

∫

IL

ċh(s) • φ̇h(s) ds
= − lim

h→∞
〈Dċh, φh〉 = −〈Dċ, φ ◦ c0〉

where we used that φh(0) = φh(L) = 0, as ϕh(0) = a, ϕh(L) = b, and φ(a) = φ(b) = 0. Since moreover

−〈Dċ, φ ◦ c0〉 =
∫

IL

ċ(s) •D(φ ◦ c0)(s) ds =
∫

ĨL

ċ(s) • φ̇(c0(s)) ċ0(s) ds
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as φ ◦ c0(0) = φ ◦ c0(L) = 0, formula (4.12) holds true.
Now, for every bounded and smooth function g ∈ C∞

b (I,RN+1) with zero average integral

g := −
∫

I

g(t) dt = 0 ,

writing (4.12) for the primitive φ ∈ C∞
b (I,RN+1) of g such that φ(a) = φ(b) = 0, we get

∫

I

w(t) • g(t) dt =
∫

I

τu(t) • g(t) dt .

On the other hand, for each constant g = (g0, . . . , gN ) ∈ RN+1 we obtain, similarly as above,

∫

I

w(t) • g dt = lim
h→∞

∫

I

τuh
(t) • g dt = lim

h→∞

L

Lh

∫

IL

ċh(s) • g ϕ̇h(s) ds

=

N∑

j=0

gj lim
h→∞

∫

IL

ċjh(s) ϕ̇h(s) ds
(4.13)

where by the weak BV -convergence ċh ⇀ c and the weak-* convergence ϕh ⇀ c0 in W 1,∞ we get

lim
h→∞

∫

IL

ċjh(s) ϕ̇h(s) ds = lim
h→∞

∫

IL

ċj(s) ϕ̇h(s) ds =

∫

IL

ċj(s) ċ0(s) ds (4.14)

for each j. By (4.13) and (4.14) we deduce

∫

I

w(t) • g dt =
N∑

j=0

gj
∫

IL

ċj(s) ċ0(s) ds =

∫

ĨL

ċ(s) • g ċ0(s) ds

so that applying (4.11) with g(t) ≡ g we obtain:

∫

I

w(t) • g dt =
∫

I

τu(t) • g dt ∀ g ∈ R
N+1.

Therefore, decomposing any bounded and smooth function g ∈ C∞
b (I,RN+1) as g(t) =

(
g(t)−g

)
+g,

by linearity we deduce that

∫

I

w(t) • g(t) dt =
∫

I

τu(t) • g(t) dt ∀ g ∈ C∞
b (I,RN+1) .

This yields that w = τu, whence τu is a function with bounded variation and the proof is complete. �

Remark 4.8 Formula (4.10) yields that ċ0(s) = |ċu(c0(s))|−1 for L1-a.e. s ∈ ĨL. By changing variable
t = c0(s), similarly to (4.11) we also obtain for each Borel set A ⊂ I

∫

A

ċu(t) dt =

∫

A

τu(t) |ċu(t)| dt =
∫

Ã

τu(c
0(s)) |ċu(c0(s))| ċ0(s) ds =

∫

Ã

ċ(s) ds

where Ã = ĨL ∩ (c0)−1(A), so that Ã = ĨL if A = I.

Convergence of the approximate gradient. As a consequence, we have:

Corollary 4.9 Let N ≥ 1 and u ∈ E(I,RN ). If {uh} ⊂ C2(I,RN ) is such that uh → u in L1 and
suph E(uh) <∞, then possibly passing to a subsequence u̇h → u̇ a.e. in I.



Proc. Royal Soc. Edinburgh, Section: A Mathematics. To appear (2016 ?) 20

Proof: In fact, by Theorem 4.7 we know that up to a subsequence τuh
⇀ τu weakly in the BV -sense,

hence τuh
→ τu a.e. in I. Denoting by Ω the set of points in I such that |u̇(t)| <∞ and τuh

(t) → τu(t),
we have that |I \ Ω| = 0 and

u̇j(t) =
τ ju(t)

τ0u(t)
= lim

h→∞

τ juh
(t)

τ0uh
(t)

= lim
h→∞

u̇jh(t)

for each j = 1, . . . , N and every t ∈ Ω, as required. �

Remark 4.10 In general, we cannot conclude that u̇h → u̇ a.e. for a smooth sequence {uh} ⊂
C2(I,RN ) weakly converging in the BV -sense to a smooth function u, if the bound suph

∫
I
|τ̇uh

(t)| dt <
∞ on the total curvature of the Cartesian curves cuh

is not satisfied.
Taking e.g. N = 1, I = [0, 2π], and uh(t) := sin(ht)/h, the sequence {uh} converges both weakly in

the BV -sense and uniformly to the null function u ≡ 0, but we have
∫ 2π

0
|τ̇uh

(t)| dt = h ·π, and it is false
that u̇h(t) = cos(ht) → 0 for a.e. t ∈ [0, 2π].

5 Closing the Gauss graph of Cartesian curves

In this section we extend the notation from Sec. 3 to the wider class of functions u in E(I,RN ), see (4.1),
i.e. with finite relaxed energy (1.11). Our definition relies on the fact that the Gauss map τu : I → SN

is a function of bounded variation, Theorem 4.7.
We shall define a current GGu carried by the “Gauss graph” of u that has three components

GGu = GGa
u +GGC

u +GGJ
u

the absolute continuous, Cantor, and Jump ones, respectively. It turns out that GGJ
u = 0 if u has

a continuous representative, and that also GGC
u = 0 if u ∈ W 1,1(I,RN ). The component GGa

u is
well-defined in terms of the approximate gradient of the BV -function Φu.

We shall then see that there is a natural way to find a “vertical” current Su ∈ D1(U × SN ) such that
the current

Σu := GGu + Su (5.1)

is i.m. rectifiable in R1(U × SN ) and has no interior boundary. Moreover, in the case N = 1 it turns
out that the mass of Σu essentially agrees with the relaxed energy E(u) as it is computed in [8], see
Corollary 7.9.

Gauss graph of Cartesian curves. In the sequel we shall denote by (dx0, dx1, . . . , dxN ) and
(dy0, dy1, . . . , dyN ) the canonical bases of 1-forms dual to the bases (e0, e1, . . . , eN) and (ε0, ε1, . . . , εN)
in R

N+1
x and R

N+1
y , respectively.

Let u ∈ E(I,RN ). As a consequence of Theorem 4.7, it turns out that the approximate gradient
function t 7→ Φ̇u(t) is well-defined a.e. in I as in (3.3), where this time ü denotes the approximate
gradient of u̇, and Φ̇u ∈ L1(I, U × RN+1

y ). Moreover, taking good representatives of each component, it

turns out that the right and left limits Φu(t±) exist at each point t ∈ I̊, with Φu(t±) = (t, u(t±), τu(t±)),
where τu = (τ0u , τ

1
u, . . . , τ

N
u ).

The absolute continuous component. As in the smooth case, since Φ̇u is summable, see
Theorem 4.7, we define the current GGa

u ∈ D1(U × SN ) by setting for each ω ∈ D1(U × SN )

〈GGa
u, ω〉 :=

∫

I

〈ω(Φu(t)), Φ̇u(t)〉 dt . (5.2)

To our purposes, we compute 〈∂GGa
u, f〉 for any f ∈ C∞

c (U × SN ). By the definition of boundary
current we obtain:

〈∂GGa
u, f〉 := 〈GGa

u, df〉 =
∫

I

〈df(Φu(t)), Φ̇u(t) dt〉 =
∫

I

∇f(Φu) • Φ̇u dt .
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Moreover, the composition function f ◦ Φu belongs to BV (I), and since f ∈ C∞
c (U × SN ) by the

definition of distributional derivative we deduce that
∫

I

D(f ◦ Φu) = 0 .

Also, choosing Φu+(t) = Φu(t+) as a precise representative, by the chain-rule formula we get

D(f ◦ Φu) = ∇f(Φu) • Φ̇u dt+∇f(Φu+) •DCΦu +
(
f(Φu+)− f(Φu−)

)
H0 JΦu

.

Therefore, we obtain that for each f ∈ C∞
c (U × SN )

〈∂GGa
u, f〉 = −

∫

I

∇f(Φu+) • dDCΦu −
∑

t∈JΦu

(
f(Φu(t+))− f(Φu(t−))

)
. (5.3)

The Cantor component. We have DCΦu • e0 = 0, DCΦu • ej = DCuj , and

DCΦu • ε0 = DCτ0u , DCΦu • εj = DCτ ju

for j = 1, . . . , N . We define the Cantor component GGC
u ∈ D1(U×SN) extending by linearity the action

on basic forms. For any g ∈ C∞
c (U × SN ) we set:

i) 〈GGC
u , g(x, y) dx

0〉 := 0

ii) 〈GGC
u , g(x, y) dx

j〉 :=
∫

I

g(Φu+) dD
Cuj , j = 1, . . . , N

iii) 〈GGC
u , g(x, y) dy

0〉 :=
∫

I

g(Φu+) dD
Cτ0u

iv) 〈GGC
u , g(x, y) dy

j〉 :=
∫

I

g(Φu+) dD
Cτ ju , j = 1, . . . , N .

Therefore, for each f ∈ C∞
c (U × SN ) we clearly obtain

〈∂GGC
u , f〉 := 〈GGC

u , df〉 =
∫

I

∇f(Φu+) • dDCΦu . (5.4)

The Jump component. In Sec. 2, for each Jump point t ∈ Ju we denoted by γt(u) the oriented
line segment in U = I̊ ×RN with initial point cu(t−) and final point cu(t+). Since γt(u) is oriented by
the unit vector (

0,
[u(t)]

|[u(t)]|
)
∈ S

N
+ , [u(t)] := (u+(t)− u−(t)) ∈ R

N \ {0} ,

we correspondingly denote by γ̃t(u) the oriented rectifiable arc in U × S
N
+

γ̃t(u) :=
(
γt(u),

(
0,

[u(t)]

|[u(t)]|
))

and we set

〈GGJ
u , ω〉 :=

∑

t∈Ju

∫

γ̃t(u)

ω , ω ∈ D1(U × S
N ) . (5.5)

In particular, for each f ∈ C∞
c (U × SN ) we obtain

〈∂GGJ
u , f〉 := 〈GGJ

u , df〉 =
∑

t∈Ju

∫

γ̃t(u)

df =
∑

t∈Ju

(
f(P+(t))− f(P−(t))

)
, (5.6)

where we have set

P±(t) :=
(
t, u(t±), 0,

[u(t)]

|[u(t)]|
)
, t ∈ Ju . (5.7)
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I
J

O

t t

Figure 3: The codimension-two ”curve” on the left has a jump-corner point at t = 0, with incoming,
jump, and outgoing directions given by I, J , and O, respectively.
On the right: a codimension-two smooth approximating Cartesian curve.

In conclusion, by the formulas (5.3), (5.4), and (5.6), we deduce that for any f ∈ C∞
c (U × S

N )

〈∂GGu, f〉 = 〈GGa
u, df〉+ 〈GGC

u , df〉+ 〈GGJ
u , df〉

=
∑

t∈Ju

(
f(P+(t)) − f(P−(t))

)
−

∑

t∈JΦu

(
f(Φu(t+))− f(Φu(t−))

)
. (5.8)

Closing the Gauss graph. By our definition it is readily checked that the x-projection of the
current GGu agrees with the Cartesian current Tu, compare Sec. 2, i.e. Πx#GGu = Tu. However, even
if we always have ∂Tu = 0, the current GGu has in general a non-zero boundary with possibly infinite
mass, given by the formula (5.8).

We thus define a “vertical” current Su in such a way that if Σu := GGu + Su as in (5.1), then Σu

has no boundary in U × SN , and again Πx#Σu = Tu. As a consequence, we will obtain that Σu is i.m.
rectifiable in R1(U × Sn). The current Su lives upon the Jump points t in JΦu

= Ju ∪ Ju̇. It is given
by two terms:

Su = SJc
u + Sc

u

a “Jump-corner” component SJc
u that is concentrated upon the discontinuity set Ju, and a “corner”

component Sc
u that is concentrated upon the discontinuity points of the approximate gradient u̇ where

u is continuous, the so called “corner” points in Ju̇\Ju. Roughly speaking, the first component takes into
account of the turning angles that appear when the “graph” of u meets a vertical part of the Cartesian
current Tu, possibly giving rise to two corners at the points (t, u±(t)), where one side of each corner is
“vertical”, since it follows the jump. The second component deals with the turning angles where u is
continuous but u̇ has a jump.

In Figures 3 and 4 we illustrate an example in codimension N = 2 with occurrence of a jump-corner
term. This is due to a jump point of both the graph function cu(t) = (t, u(t)) and of its derivative. A
crucial role is played by the incoming, jump, and outgoing directions, denoted by I, J , and O. The jump
direction is determined by the last N + 1 components in the formula (5.7). The incoming and outgoing
directions are determined by the last N + 1 components of Φu(t−) and Φu(t+), respectively, i.e. by the
left and right limits τu(t±) of the Gauss map.

A similar example with a corner term is readily obtained by gluing together the two line segments of
the graph cu(t). In this case, only the incoming and outgoing directions τu(t±) come into play.

The Jump-corner component. For each point t ∈ Ju, we denote by Γ±
t (u) an oriented

geodesic arc in {cu(t±)} × SN+ with initial point P±(t), see (5.7), and final point Φu(t±), and we set

〈SJc
u , ω〉 :=

∑

t∈Ju

(∫

Γ+
t
(u)

ω −
∫

Γ−

t
(u)

ω
)
, ω ∈ D1(U × S

N ) . (5.9)
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(0,1)

(1,0) (0,1,0)

(0,0,1)

I

J

O

(1,0,0)

Figure 4: On the left: we revise the codimension-one curve in Example 1.5, drawing the image of the
tantrix of the smooth approximation of cuh

. It corresponds to the τ -projection of the curve on the right-
hand side of Figure 2.
On the right: the image on the 2-sphere of the tantrix of the codimension-two smooth approximating
Cartesian curve from Figure 3.

Therefore, we clearly have Πx#S
Jc
u = 0, and for each f ∈ C∞

c (U × SN ) we compute

〈∂SJc
u , f〉 := 〈SJc

u , df〉 =
∑

t∈Ju

(
f(Φu(t+))− f(P+(t))− f(Φu(t−)) + f(P−(t))

)
. (5.10)

The corner component. Instead, for each point t ∈ Ju̇ \ Ju, we denote by Γt(u) an oriented
geodesic arc in {cu(t)} × SN+ with initial point Φu(t−) and final point Φu(t+), and we set

〈Sc
u, ω〉 :=

∑

t∈Ju̇\Ju

∫

Γt(u)

ω , ω ∈ D1(U × S
N ) .

We again have Πx#S
c
u = 0, whereas this time for each f ∈ C∞

c (U × SN ) we get

〈∂Sc
u, f〉 := 〈Sc

u, df〉 =
∑

t∈Ju̇\Ju

(
f(Φu(t+))− f(Φu(t−))

)
. (5.11)

Remark 5.1 The current Su := SJc
u + Sc

u is “vertical” in the sense that for any g ∈ C∞
c (U × SN )

〈Su, g(x, y) dx
j〉 = 0 ∀ j = 0, . . . , N .

In fact, all the arcs Γ±
t (u) and Γt(u) have tangent vector that is everywhere perpendicular to the

horizontal directions e0, e1, . . . , eN .

Properties. The current Σu ∈ D1(U × SN ) is supported in U × SN+ , and it satisfies Πx#Σu = Tu.
Moreover the null-boundary condition ∂Σu = 0 holds. In fact, by (5.8), (5.10), and (5.11), we check

〈∂Σu, f〉 = 〈∂GGu, f〉+ 〈∂SJc
u , f〉+ 〈∂Sc

u, f〉 = 0 ∀ f ∈ C∞
c (U × S

N ) .

Mass decomposition. It is readily seen that the mass of Σu decomposes as

M(Σu) = M(GGa
u) +M(GGC

u ) +M(GGJ
u) +M(SJc

u ) +M(Sc
u) . (5.12)

In fact, all the involved arcs γ̃t(u), Γ
±
t (u), and Γt(u) are H1-essentially disjoint, as they possibly meet

only at the end points, whereas the absolute continuous and Cantor parts DaΦu and DCΦu are null on
the at most countable set JΦu

. More explicitly, we have

M(GGa
u) =

∫

I

|Φ̇u(t)| dt , |Φ̇u| = |ċu|
√
1 + k 2

u
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where, we recall,

|ċu| =
√
1 + |u̇|2 , k 2

u =
|ü|2(1 + |u̇|2)− (u̇ • ü)2

(1 + |u̇|2)3 .

As to the Cantor component, we have M(GGC
u ) = |DCΦu|(I), and hence

2−1/2
(
|DCu|(I) + |DCτu|(I)

)
≤ M(GGC

u ) ≤ |DCu|(I) + |DCτu|(I) .

Finally, for the mass of the other three components we compute

M(GGJ
u) =

∑
t∈Ju

H1(γ̃t(u)) =
∑

t∈Ju

|[cu(t)]| = |DJu|(I)
M(SJc

u ) =
∑

t∈Ju

(
H1(Γ+

t (u)) +H1(Γ−
t (u))

)

M(Sc
u) =

∑
t∈Ju̇\Ju

H1(Γt(u)) .

(5.13)

Rectifiability. Finally, in Corollary 8.4 we shall prove that Σu is an i.m. rectifiable current in
R1(U×S

N ), actually an integral 1-cycle in U×S
N . This fact will be used only in the proof of the density

theorem 8.5 below.

6 Gauss graphs of Cartesian currents

In Proposition 4.4 we outlined some basic facts concerning currents in the class Gcart(U × SN ) defined
in (4.4). In this section we prove further structure properties, Theorem 6.1, and give an explicit example.
We also show that currents in Gcart(U×SN ) preserve the geometry of Gauss graphs of Cartesian curves,
Theorem 6.3.

A first structure theorem. We extend Proposition 4.4.

Theorem 6.1 Let Σ ∈ Gcart(U × S
N ) and let {uh} ⊂ C2(I,RN ) be such that suph M(GGuh

) < ∞
and GGuh

⇀ Σ weakly in D1(U × SN ). Then we have:

i) The sequence {uh} converges weakly in the BV -sense to some function u ∈ E(I,RN ), i.e. with
finite relaxed energy (1.11) .

ii) The function t 7→ Φu(t) of Theorem 4.7 belongs to BV (I, U × SN ) and it is equal to the weak
BV -limit of the sequence {Φuh

} .

iii) The current Σ decomposes as

Σ = GGa
u +GGC

u + Σ̃ (6.1)

where GGa
u and GGC

u are the absolute continuous and Cantor component of the current GGu

defined w.r.t. the limit function u as in Sec. 5 .

iv) If Tu is the current defined in (2.1)–(2.4), we have

Πx#GG
a
u = T a

u , Πx#GG
C
u = TC

u .

v) The component Σ̃ has support contained in U × SN+ , and it satisfies the verticality condition

〈Σ̃, g(x, y) dx0〉 = 0 ∀ g ∈ C∞
c (U × S

N )

and the boundary condition

∂Σ̃ =
∑

t∈JΦu

(
δΦu(t+) − δ(Φu(t−))

)
on C∞

c (U × S
N ) .
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vi) The following decomposition in mass holds:

Σ̃ = Σ̂ +
∑

t∈JΦu

Γt,Σ , M(Σ̃) = M(Σ̂) +
∑

t∈JΦu

M(Γt,Σ) ,

where the current Σ̂ ∈ R1(U × SN ) satisfies the null-boundary condition ∂Σ̂ = 0, and Γt,Σ is for
each t ∈ JΦu

an a-cyclic i.m. rectifiable current in R1(U × SN ), supported in {t}×RN × SN+ , and
with boundary

∂Γt,Σ = δΦu(t+) − δΦu(t−) . (6.2)

Proof: Properties i) and ii) follow from Proposition 4.4 and Theorem 4.7, respectively, while property iii)
is an immediate consequence of the general structure properties from [13] concerning the class of Cartesian
currents in cart(I̊×RD), where D := 2N+1. Property iv) is a consequence of iii) and of Proposition 4.4.
Regarding property v), the support condition follows from the fact that sptGGuh

⊂ U × SN+ for any h,
the verticality condition from the convergence

lim
h→∞

〈GGuh
, g(x, y) dx0〉 = lim

h→∞

∫

I

g(Φuh
(t)) dt =

∫

I

g(Φu(t)) dt ,

a consequence of iv), recalling from Sec. 5 that

〈GGa
u, g(x, y) dx

0〉 =
∫

I

g(Φu(t)) dt , 〈GGC
u , g(x, y) dx

0〉 = 0 ,

whereas the boundary condition follows from (5.3) and (5.4), using that ∂Σ = 0. Finally, property vi)
follows from v) on account of the classical decomposition theorem, see [12, 4.2.25]. �

Example 6.2 We explicitly compute all the current Σ in a simple case. Referring to Example 1.5, we
let Σ denote the weak limit of the sequence of Gauss graphs {GGvh} corresponding to a “smoothing”
vh : [−1, 1] → R of the sequence {uh} from (1.7) at the corner points (−π/h, 0) and (π/h, 2π). The
smoothing can be performed as in Example 1.1. By a diagonal argument, we may choose the smooth
sequence {vh} in an optimal way, so that the total curvature of the Cartesian curve cvh is equal to
2 arctanh for each h, and vh agrees with uh outside two small intervals centered at the points ±π/h,
in such a way that ‖vh − uh‖∞ → 0 as h→ ∞, see Figure 2.

Then L = 2(1 + π) and the parameterization s 7→ c(s) from Proposition 4.5 is equal to the one
defined in (1.8). We thus have

ċ(s) :=





(1, 0) if 0 ≤ s < 1
(0, 1) if 1 < s < 1 + 2π
(1, 0) if 1 + 2π < s < 2(1 + π)

and hence in this case the image current (c, ċ)#[[ IL ]] agrees with the current GGu from Sec. 5, where
u : [−1, 1] → R is the weak limit BV -function

u(t) :=

{
0 if t < 0
2π if t > 0 .

(6.3)

More precisely, we have GGu = GGa
u +GGC

u +GGJ
u , where the absolute continuous component is given

by (5.2) with I = [−1, 1] and

Φu(t) =

{
(t, 0, 1, 0) if t < 0
(t, 2π, 1, 0) if t > 0

i.e. GGa
u = Φu#[[ I ]]; the Cantor component is zero, GGC

u = 0, and the Jump component GGJ
u,

according to (5.5), agrees with the integration on the oriented line segment in {0} × R× S1 with initial
point (0, 0, 0, 1) and final point (0, 2π, 0, 1). In particular, since JΦu

= Ju = {0}, in accordance with
(5.8) and (5.7) we have

∂(c, ċ)#[[ IL ]] = ∂GGu = −
(
δΦu(0+) − δΦu(0−)

)
+
(
δP+(0) − δP−(0)

)
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on C∞
c (U × S1), where

Φu(0+) = (0, 2π, 1, 0) , Φu(0−) = (0, 0, 1, 0) ,
P+(0) = (0, 2π, 0, 1) , P−(0) = (0, 0, 0, 1) .

Moreover, by our optimal choice of the sequence {vh}, it turns out that the weak limit current Σ of the
sequence {GGvh} agrees with the current Σu from Sec. 5. This means that Σ = Σu = GGu +SJc

u +Sc
u,

where the corner component Sc
u = 0, since there are no points in Ju̇\Ju, and the Jump-corner component

SJc
u , according to (5.9), is given by

SJc
u = [[ Γ+

0 (u) ]]− [[ Γ−
0 (u) ]] , (6.4)

where Γ±
0 (u) is the oriented geodesic arc in {cu(0±)} × S1+ with initial point P±(0) and final point

Φu(0±). We thus have
M(Σu) = M(GGa

u) +M(GGJ
u) +M(SJc

u ) ,

where
M(GGa

u) = 2 , M(GGJ
u) = |Du|(I) = 2π , M(SJc

u ) = 2 · π
2
. (6.5)

Structure of Gauss graphs. We now see that a current Σ in the class Gcart(U×SN ) preserves
the geometry of Gauss graphs: indeed, for a regular Gauss graph (cu, τu) the second component τu is a
normalization of the tangent vector to the first component. We prove that when the first component of
the tangent vector to Σ at a point z = (x, y) ∈ U × SN+ is non zero, then it has to be parallel (and with
the same verse) to the second component y of the point z, see (6.6) below.

For this purpose, we let Σ ∈ Gcart(U×SN ). In Remark 4.6 we have shown the existence of a Lipschitz
function Ψ ∈ Lip(IL̃, U ×SN ) such that the image current Ψ#[[ IL̃ ]] agrees with Σ. Recall that Πx and

Πy denote the orthogonal projections of U × S
N onto the x and y coordinates, respectively.

Theorem 6.3 For a.e. s ∈ JL̃ such that |Πx(Ψ̇(s))| 6= 0, we have

Πx(Ψ̇(s))

|Πx(Ψ̇(s))|
= Πy(Ψ(s)) ∈ S

N
+ . (6.6)

Proof: Choose a sequence {uh} ⊂ C2(I,RN ) satisfying suph M(GGuh
) <∞ and GGuh

⇀ Σ weakly
in D1(U × S

N ). In Remark 4.6 we correspondingly defined the smooth functions Ψh(s) := Φuh
(ϕ̃h(s)) :

IL̃ → U × SN with constant velocity L̃h/L̃ such that Ψh#[[ IL̃ ]] = GGuh
for each h. Since GGuh

is the
current carried by the Gauss graph of a smooth function, writing for simplicity t(s) = ϕ̃h(s) we have

L̃

L̃h

Ψ̇h(s) =
Φ̇uh

(t(s))

|Φ̇uh
(t(s))|

, Φ̇uh
(t) = (ċuh

(t), τ̇uh
(t))

for each s ∈ IL̃. Recalling that τ̇uh
= ċuh

/|ċuh
|, this implies that for every s ∈ IL̃

Πx(Ψ̇h(s))

|Πx(Ψ̇h(s))|
= Πy(Ψh(s)) ∈ S

N
+ . (6.7)

Setting
ah(s) := Πx(Ψ̇h(s)) , bh(s) := Πy(Ψh(s)) ,

formula (6.7) yields that the two vectors ah(s) and bh(s) are always parallel and pointing the same way.
This geometric property is a.e. preserved when passing to the limit as h→ ∞. More precisely, setting

a(s) := Πx(Ψ̇(s)) and b(s) := Πy(Ψ(s)) we prove that the two vectors a(s) and b(s) are parallel and
pointing the same way, for a.e. s ∈ IL̃. This clearly implies the validity of (6.6).

Now, given two vectors a, b ∈ RN+1, with a 6= 0 and |b| = 1, they are parallel and pointing the same
way if and only if a/|a| = b, that is equivalent to a • b = |a|, since

|(a/|a|)− b|2 = 1 + 1− 2
a • b
|a| .
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Possibly passing to a subsequence, by Remark 4.6 we know that {Ψh} uniformly converges in IL̃ to

the above mentioned Lipschitz function Ψ ∈ Lip(IL̃, U × SN ), whence bh(s) → b(s) ∈ SN+ uniformly in

IL̃. Since moreover Ψ̇h ⇀ Ψ̇ weakly-* in L∞, we deduce that ah(s)⇀ a(s) weakly-* in L∞, whence

lim
h→∞

∫

I
L̃

ah(s) • bh(s) ds =
∫

I
L̃

a(s) • b(s) ds .

Since moreover ah(s)⇀ a(s) weakly in L1, the lower semicontinuity

∫

I
L̃

|a(s)| ds ≤ lim inf
h→∞

∫

I
L̃

|ah(s)| ds

holds, and hence

∫

I
L̃

(
|a(s)| − a(s) • b(s)

)
ds ≤ lim inf

h→∞

∫

I
L̃

(
|ah(s)| − ah(s) • bh(s)

)
ds .

By (6.7) we have seen that |bh| = 1, |ah| 6= 0, and ah/|ah| = bh for all s and h. Therefore, we obtain

∫

I
L̃

(
|a(s)| − a(s) • b(s)

)
ds ≤ 0 .

The integrand being non-negative by the Schwartz inequality a • b ≤ |a||b| = |a|, we deduce that |a(s)|−
a(s) • b(s) = 0 for a.e. s ∈ IL̃, whence the two vectors a(s) and b(s) are parallel and pointing the same
way, as required. �

7 The energy functional on currents

In this section we define a lower semicontinuous functional Σ 7→ E0(Σ) in the class R1(U × S
N ) that

agrees with the energy functional E(u) when restricted to the Gauss graph GGu of a smooth function,
see Proposition 7.2. Since we aim at showing that E(u) = E0(Σu), we shall finally write more explicitly
the action of the energy functional in the case of Gauss graphs Σ = Σu of BV -functions u such that
E(u) <∞.

The energy on currents. In order to define the energy functional on the class Gcart(U × SN ),
we remark that these currents are of the type S = [[M, θ, ξ ]], i.e.

〈S, ω〉 =
∫

M

〈ω, ξ〉 θ dH1 ∀ω ∈ D1(U × S
N ) ,

where M is a countably 1-rectifiable set, ξ is the orienting unit vector and θ is the integer-valued non-
negative multiplicity function, so that M(S) =

∫
M

θ dH1. The unit vector ξ in RN+1
x ×RN+1

y orienting

M at H1 M-a.e. point can be decomposed as ξ = (ξ(x), ξ(y)), where ξ(x) := Πx(ξ) and ξ(y) := Πy(ξ).

Definition 7.1 For any current S = [[M, θ, ξ ]] we let

E0(S) :=

∫

M

θ
(
|ξ(x)|+ |ξ(y)|

)
dH1 .

Proposition 7.2 The following properties hold:

i) (smooth maps) If S = GGu for some smooth function u ∈ C2(I,RN ), then E0(GGu) = E(u) .

ii) (lower semicontinuity) Let {uh} ⊂ C2(I,RN ) be such that GGuh
⇀ Σ weakly in D1(U ×SN )

to some Σ ∈ Gcart(U × SN ). Then E0(Σ) ≤ lim infh E(uh).
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iii) (Energy decomposition) If Σ ∈ Gcart(U × SN ) decomposes as in (6.1), then

E0(Σ) =

∫

I

|ċu|(1 + ku) dt+ |DCu|(I) + |DCτu|(I) + E0(Σ̃) .

Proof: If S = GGu for some smooth u, then M = GGu, θ ≡ 1, and ξ = ξu is given by (3.2), so that

E0(GGu) =

∫

GGu

(
|ξ(x)u |+ |ξ(y)u |

)
dH1 , |ξ(x)u | = |ċu|

|Φ̇u|
, |ξ(y)u | = |ċu| ku

|Φ̇u|
.

By the area formula, from the definition (1.10) we thus obtain property i), as

E(u) =
∫

I

|ċu|(1 + ku) dt =

∫

I

|Φ̇u|
(
|ξ(x)u |+ |ξ(y)u |

)
dt =

∫

GGu

(
|ξ(x)u |+ |ξ(y)u |

)
dH1 . (7.1)

The lower semicontinuity property ii) follows from the fact that the functional S 7→ E0(S) is a
parametric integrand, see [13, Vol. II, Sec. 3.3.1].

More precisely, denote by T (U × SN ) the class of i.m. rectifiable currents Σ ∈ R1(U × SN ) such
that Πx#Σ ∈ cart(I̊ × RN). Notice that Gcart(U × SN ) ⊂ T (U × SN ) and Σu ∈ T (U × SN ) for
every u ∈ BV (I,RN ) such that E(u) < ∞. Now, following [13], one obtains that the energy functional
Σ 7→ E0(Σ) agrees on the class T (U × SN ) with the parametric convex lower semicontinuous extension
of the functional u 7→ E(u). This implies the lower semicontinuity property ii).

To show property iii), we first see that from the decomposition (6.1) we get

E0(Σ) = E0(GGa
u) + E0(GGC

u ) + E0(Σ̃) ,

where the three terms are correspondingly computed as in Definition 7.1. Now, from the definition of
GGa

u, arguing as in the smooth case, see (7.1), for the absolute continuous component we get

E0(GGa
u) =

∫

I

|ċu|(1 + ku) dt .

As to the Cantor component we similarly obtain E0(GGC
u ) = |DCu|(I) + |DCτu|(I) . �

The energy on Gauss graphs. Let now Σ = Σu be the Gauss graph of a BV -function u such
that E(u) < ∞, see Sec. 5. Notice that the current Σu actually decomposes as (6.1), where the third

term Σ̃ = Σ̃u is given by the sum of the Jump, Jump corner and corner components. Then Σu is of the
type [[M, 1, ξ ]], so that the energy E0(Σu) is well defined. We thus have

E0(Σu) =

∫

I

|ċu|(1 + ku) dt+ |DCu|(I) + |DCτu|(I) + E0(Σ̃u) , Σ̃u = GGJ
u + SJc

u + Sc
u.

Moreover, we recall from Sec. 5 that

Σ̃u =
∑

t∈Ju

(
−[[ Γ−

t (u) ]] + [[ γ̃t(u) ]] + [[ Γ+
t (u) ]]

)
+

∑

t∈Ju̇\Ju

[[ Γt(u) ]]

where the oriented arcs satisfy:

i) γ̃t(u) is the line segment in {t} × RN × SN+ connecting the points P±(t) defined by (5.7), so that
∂[[ γ̃t(u) ]] = δP+(t) − δP−(t)

ii) Γ±
t (u) is a geodesic arc in {t} ×RN × SN+ with initial point P±(t) and final point Φu(t±), so that
∂[[ Γ±

t (u) ]] = δΦu(t±) − δP±(t)

iii) for any t ∈ Ju we thus have ∂
(
−[[ Γ−

t (u) ]] + [[ γ̃t(u) ]] + [[ Γ+
t (u) ]]

)
= δΦu(t+) − δΦu(t−)

iv) for any t ∈ Ju̇ \ Ju, instead, Γt(u) is a geodesic arc in {cu(t)} × SN+ with initial point Φu(t−) and
final point Φu(t+), so that again ∂[[ Γt(u) ]] = δΦu(t+) − δΦu(t−).
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We now see how the energy on smooth curves splits into the sum of the length of the projections.

Remark 7.3 Let γ : [−M,M ] → U × SN denote a simple Lipschitz curve, that decomposes as γ =
(Πx(γ),Πy(γ)). Setting Γ := γ#[[−M,M ]], we have Γ = [[M, 1, ξΓ ]] where M = γ([−M,M ]) and
ξΓ(x, y) = γ̇(s)/|γ̇(s)| if (x, y) = γ(s), for a.e. s ∈ [−M,M ]. By the area formula, we then compute

E0(Γ) =

∫

γ([−M,M ])

(
|ξ(x)Γ |+ |ξ(y)Γ |

)
dH1

=

∫ M

−M

|Πx(γ̇(s))| ds +
∫ M

−M

|Πy(γ̇(s))| ds = L(Πx(γ)) + L(Πy(γ)) .

In our case, we thus readily obtain by this remark:

E0(Σ̃u) =
∑

t∈Ju

(
H1(Γ+

t (u)) +H1(γ̃t(u)) +H1(Γ−
t (u))

)
+

∑

t∈Ju̇\Ju

H1(Γt(u))

and hence, on account of (5.13),

E0(Σ̃u) = M(GGJ
u) +M(Sc

u) +M(SJc
u ) .

We have thus proved:

Corollary 7.4 For every u ∈ E(I,RN ) the current Σu defined in (5.1) satisfies

E0(Σu) =

∫

I

|ċu|(1 + ku) dt+ |DCu|(I) + |DCτu|(I) +M(GGJ
u) +M(Sc

u) +M(SJc
u ) . (7.2)

Remark 7.5 From the mass estimates after (5.12), see also (3.6), we deduce that

2−1/2 E0(Σu) ≤ M(Σu) ≤ E0(Σu)

and hence:

Corollary 7.6 For every u ∈ E(I,RN ) we have

M(Σu) <∞ ⇐⇒ E0(Σu) <∞ .

Example 7.7 Returning to Example 6.2, that refers to Example 1.5, we recall that Σu = GGu + SJc
u ,

where u : [−1, 1] → R is the piecewise constant function in (6.3), and the Jump-corner component SJc
u

is defined by (6.4), i.e. it is the sum of two oriented arcs in {cu(0±)}×S1+ both of length π/2. By using
(6.5) and (7.2), we thus obtain

E0(Σu) = 2(1 + π) + 2 · π
2
,

so that the expected formula from (1.9) holds, as with our choices λ1 = λ2 = 1 and g∞ = 1.

For our purposes, we now write an equivalent formula for the energy (7.2) :

Proposition 7.8 If u ∈ E(I,RN ), we have

E0(Σu) = |Dcu|(I) + |Dτu|(I \ Ju) +M(SJc
u ) ,

where the jump-corner term M(SJc
u ) is given by formula (5.13).

Proof: In fact, recalling that M(GGJ
u) = |DJu|(I) and that the graph map cu(t) = (t, u(t)) satisfies

|Dacu|(I) =
∫

I

|ċu(t)| dt , |DCcu|(I) = |DCu|(I) , |DJcu|(I) = |DJu|(I) ,

where |ċu| =
√
1 + |u̇|2, we have

∫

I

|ċu| dt+ |DCu|(I) +M(GGJ
u) = |Dcu|(I) .
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Since moreover the term M(Sc
u) is given by the formula (5.13), we check that

|Daτu|(I) =
∫

I

|ċu(t)| ku dt , |DJτu|(I \ Ju) = M(Sc
u) .

Using that |DCτu|(I) = |DCτu|(I \ Ju), we get
∫

I

|ċu| ku dt+ |DCτu|(I) +M(Sc
u) = |Dτu|(I \ Ju) .

The claim follows from (7.2). �

The case of codimension one. Assume now that N = 1. In this case the curvature ku := |k̃u|
is defined a.e. in I by (3.4), but in terms of the first and second approximate gradient of u, whence

|ċu(t)| ku(t) = |v̇(t)| , |Dτu|(I) = |Dv|(I) , (7.3)

where v := arctan u̇ ∈ BV (I). Recalling from [8] the formulas (4.2) and (4.3) for the relaxed energy, we
readily obtain:

Corollary 7.9 Let N = 1 and u ∈ L1(I,R) be such that E(u) <∞. Then

E(u) = E0(Σu)

where the energy E0(Σu) is given by Proposition 7.8.

Proof: In fact, by (7.3) we have

|D arctan u̇|(I \ Ju) = |Dτu|(I \ Ju) .

Moreover, comparing formula (5.13) for the mass of the jump-corner component SJc
u with the explicit

computation for the last addendum in (4.3), in the case of the curvature functional, we readily check that

M(SJc
u ) =

∑

t∈Ju

Φ(νu(t), u̇(t−), u̇(t+)) .

The claim follows from the formulas (4.2) and (4.3), on account of Proposition 7.8. �

8 Energy bounds

In the case of codimension one, in Corollary 7.9 we deduced that for every u ∈ E(I,R)

E(u) = E0(Σu) .

We will show, see Corollary 9.1, that the above formula holds true in higher codimension N ≥ 1, too.
More precisely, in the first part of this section we shall prove the lower bound “≥”, Theorem 8.1. In the
second part we shall prove the upper bound “≤” by means of the density theorem 8.5.

The energy lower bound. For any Σ ∈ Gcart(U × S
N ), we shall denote by uΣ the function

u ∈ BV (I,RN ) for which decomposition (6.1) holds. Correspondingly, we define

Gcartu := {Σ ∈ Gcart(U × S
N ) | uΣ = u} , u ∈ BV (I,RN ) . (8.1)

By the definition of the class Gcart(U × SN ), according to (4.1) we clearly have

u ∈ E(I,RN ) =⇒ Gcartu 6= ∅ .
On the other hand, since the weak convergence GGuh

⇀ Σ implies the weak convergence uh ⇀ u = uΣ
in the BV -sense, we conversely deduce:

∀u ∈ BV (I,RN ), Gcartu 6= ∅ =⇒ u ∈ E(I,RN ) .
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Theorem 8.1 (Energy lower bound). For every u ∈ E(I,RN ) we have E(u) ≥ E0(Σu), where
E0(Σu) is given by Corollary 7.4.

Proof: Choose a sequence {uh} ⊂ C2(I,RN ) such that uh → u in L1(I,RN ). We have to show that

E0(Σu) ≤ lim inf
h→∞

E(uh) .

Without loss of generality, we assume that the above lower limit is a finite limit, and that GGuh
weakly

converges to a current Σ ∈ Gcart(U × SN ). Since by the L1-convergence uΣ = u, then Σ ∈ Gcartu. By
lower semicontinuity we have lim infh E(uh) ≥ E0(Σ), and hence we readily obtain that

E(u) ≥ inf{E0(Σ) | Σ ∈ Gcartu} .

Therefore, the claim follows if we show that E0(Σ) ≥ E0(Σu) for every Σ ∈ Gcartu.
Now, the decomposition formula (6.1) holds true for any Σ ∈ Gcartu. Therefore, on account of

Proposition 7.2 and formula (7.2) the inequality E0(Σ) ≥ E0(Σu) holds true if we show that

E0(Σ̃) ≥ M(GGJ
u) +M(Sc

u) +M(SJc
u ) . (8.2)

To this purpose, we make use of the mass decomposition given by property vi) from the structure
theorem 6.1. In particular, from Definition 7.1 we readily obtain the energy estimate:

E0(Σ̃) ≥
∑

t∈JΦu

E0(Γt,Σ) .

As a consequence, by (5.13) we deduce that the lower bound (8.2) holds true provided that the two
following properties are verified :

(a) if t ∈ Ju̇ \ Ju, then E0(Γt,Σ) ≥ H1(Γt(u)) ;

(b) if t ∈ Ju, then E0(Γt,Σ) ≥ H1(Γ+
t (u)) +H1(γ̃t(u)) +H1(Γ−

t (u)).

Property (a) is readily checked, by the minimality of the geodesic arc Γt(u). In fact, if t ∈ Ju̇ \ Ju
we have Φu±(t) = (t, u(t), τu±(t)), and the i.m. rectifiable 1-current Γt,Σ is supported in {t}×RN ×SN+

and has boundary given by (6.2). Therefore, the mass of Γt,Σ is bounded from below by the length of a
geodesic arc in SN+ connecting the points τu±(t), i.e. by H1(Γt(u)).

In order to prove property (b), we fix a Jump point t ∈ Ju and recall that Γt,Σ is an a-cyclic (or
indecomposable) i.m. rectifiable current in R1(U × S

N ) with boundary given by (6.2).
By Federer’s structure theorem [12, 4.2.25], we find a Lipschitz and injective function γt : [−M,M ] →

U × SN such that |γ̇t| = 1 a.e., 2M = M(Γt,Σ), and γt#[[−M,M ]] = Γt,Σ.
Therefore, as in Remark 7.3 we obtain

E0(Γt,Σ) = L(Πx(γt)) + L(Πy(γt)) .

Moreover, using the boundary condition (6.2) we deduce that

δγt(M) − δγt(−M) = ∂γt#[[−M,M ]] = δΦu(t+) − δΦu(t−)

and hence that γt(±M) = Φu(t±) = (cu(t±), τu(t±)). Since then Πx ◦ γt(±M) = cu(t±), we estimate

L(Πx(γt)) ≥ |cu(t+)− cu(t−)| = |[u(t)]|

where |[u(t)]| = H1(γ̃t(u)), whence
L(Πx(γt)) ≥ H1(γ̃t(u)) .

Therefore, property (b) holds if we show that

L(Πy(γt)) ≥ H1(Γ+
t (u)) +H1(Γ−

t (u)) . (8.3)

For this purpose, we first exploit the geometric property from Theorem 6.3 to prove the following
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Proposition 8.2 There exists an oriented rectifiable curve ct in U with initial point cu(t−), final point
cu(t+), initial velocity τu(t−), and final velocity τu(t−) such that

L(Πy(γt)) ≥ TC(ct) .

Proof: Recalling that Ψ#[[ IL̃ ]] = Σ and γt#[[−M,M ]] = Γt,Σ, property (6.6) clearly implies the analo-
gous one concerning the orienting vector γ̇t, namely that for a.e. λ ∈ [−M,M ] such that |Πx(γ̇t(λ))| 6= 0

Πx(γ̇t(λ))

|Πx(γ̇t(λ))|
= Πy(γt(λ)) ∈ S

N
+ .

Since moreover Πy ◦ γt(±M) = τu(t±) and Πx ◦ γt(±M) = cu(t±), and the function γt is Lipschitz-
continuous, we obtain the existence of the required curve ct. �

By means of the average estimate from Proposition 1.4, we now prove the following inequality:

Proposition 8.3 Let ct be the curve given by Proposition 8.2. We have

TC(ct) ≥ H1(Γ+
t (u)) +H1(Γ−

t (u)) .

In fact, this property implies (8.3), by Proposition 8.2, and concludes the proof of Theorem 8.1. �

Proof of Proposition 8.3: Consider a polygonal curve Pt in R
N+1 given by three consecutive line

segments, the first one oriented by τu(t−), the second one by (0, [u(t)]), where [u(t)] := u(t+) − u(t−),
and the third one by τu(t+). The total curvature TC(Pt) is equal to the sum of the two corresponding
turning angles, that are equal to the length of the arcs Γ±

t (u), i.e. to H1(Γ±
t (u)). We thus have

TC(Pt) = H1(Γ+
t (u)) +H1(Γ−

t (u)) .

We apply the average formula from Proposition 1.4, with n = N +1 and k = 2. More precisely, if µ2

is the Haar measure associated to the Grassmannian G2R
N+1 of 2-planes in RN+1, we have

TC(Pt) =

∫

G2R
N+1

TC(πp(Pt)) dµ2(p) .

In a similar way, for the curve ct we have

TC(ct) =

∫

G2R
N+1

TC(πp ◦ ct) dµ2(p) .

It then suffices to show that for µ2-a.e. p ∈ G2R
N+1 one has

TC(πp ◦ ct) ≥ TC(πp(Pt)) . (8.4)

In fact, assuming that (8.4) holds true, by monotonicity of the integrals w.r.t. the measure µ2 we get

TC(ct) ≥ TC(Pt) = H1(Γ+
t (u)) +H1(Γ−

t (u)) .

Now, the projection curve πp ◦ ct has end points πp(cu(t±)), initial velocity πp(τu(t−)), and final
velocity πp(τu(t+)). Moreover, for µ2-a.e. projection πp one has πp(cu(t−)) 6= πp(cu(t+)). The passage
to planes is due to the following: for any such planar curve πp ◦ ct in p ≃ R

2, the total curvature
TC(πp ◦ ct) cannot be lower than the sum of the two turning angles between the two couples of vectors
πp(τu(t−)) , πp(0, [u(t)]), and πp(τu(t+)) , πp(0, [u(t)]). Since the sum of such two turning angles is equal
to the total curvature TC(πp(Pt)) of the p-projection of the polygonal curve Pt, inequality (8.4) follows,
as required. �

Corollary 8.4 If u ∈ E(I,RN ), then M(Σu) < ∞. In particular Σu is an i.m. rectifiable current in
R1(U × SN ).
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Proof: From Theorem 8.1 and Corollary 7.6 we deduce that the current Σu has finite mass. Thus Σu

is a normal current in D1(U × S1) that is concentrated on a 1-rectifiable set. Then by the rectifiable
slices theorem, compare [10, Thm. 3.2], we obtain that Σu is an i.m. rectifiable current in R1(U × SN ),
actually an integral 1-cycle in U × SN . �

The energy upper bound. We now prove a density property for the i.m. rectifiable currents Σu

associated to the Gauss graph of functions u with finite relaxed energy.

Theorem 8.5 (Energy upper bound). For every u ∈ E(I,RN ), there exists a sequence of smooth
functions {uh} ⊂ C2(I,RN ) such that uh → u strongly in L1, GGuh

⇀ Σu weakly in D1(U ×SN) and
E(uh) → E0(Σu) as h→ ∞, where E0(Σu) is given by Corollary 7.4.

The one-dimensional case. Before giving the proof of the density theorem 8.5, we recall how
the corresponding approximation result is proved in the cited paper [8] for the case N = 1. The proof
from [8] is divided in three steps. In the first step the authors assume that u̇ is an L∞-function, so that
DCu = 0, by the membership of u to the class X(I) of Definition 4.1, and that the Jump set Ju is
finite. In the second step they only assume that Ju is finite, and in the third one the above restriction
is removed.

In Proposition 8.6 below, we shall make use of the higher codimension analogous of the following
density argument, that goes back to the first step of the proof of [8, Thm. 2.5].

Assume u ∈ E(I,R) is in W 1,1 with u̇ ∈ L∞. Let {vh} ⊂ C2(I) be such that vh → arctan u̇
strongly in the BV -sense, with suph ‖vh‖∞ < ‖ arctan u̇‖∞ < π/2. Define wh(t) := tan(vh(t)) and

uh(t) := u(a)+
∫ t

a
wh(s) ds. One has wh → u̇ strongly in L1, hence uh(t) → u(a)+

∫ t

a
u̇(s) ds = u(t) a.e.

and actually in L1(I), by dominated convergence. Moreover, one obtains that
∫
I |ċuh

| dt→
∫
I |ċuh

| dt as
h→ ∞. Also, u̇h = tan vh, üh = (1 + tan2 wh) v̇h, and hence üh/(1 + u̇2h) = v̇h, that yields

lim
h→∞

∫

I

|ċuh
| kuh

dt = lim
h→∞

∫

I

|v̇h| dt = |D(arctan u̇)|(I)

and we recall that |D(arctan u̇)|(I) = |Dτu|(I) in codimension N = 1.

Proof of Theorem 8.5: The proof is divided into four steps. We let u ∈ E(I,RN ), so that E(u) <∞.
In the first step we assume in addition that u is a Sobolev function in W 1,1(I,RN ) with u̇ ∈ L∞(I,RN ).
In the second one we only assume that u ∈ W 1,1(I,RN ), in the third one that u is continuous, and in
the last one we deal with the more general case.

Step 1: We prove the following

Proposition 8.6 Let u ∈ E(I,RN ) be a Sobolev function in W 1,1(I,RN ) with u̇ ∈ L∞(I,RN ). There
exists a smooth sequence {uh} ⊂ C∞(I,RN ) such that uh → u in W 1,1 and

lim
h→∞

∫

I

|ċuh
| dt =

∫

I

|ċu| dt , lim
h→∞

∫

I

|ċuh
| kuh

dt = |Dτu|(I) .

Since M(SJc
u ) = 0 if Ju = ∅, by Proposition 7.8 we thus obtain the validity of Theorem 8.5 for the

subclass of “smooth” functions u satisfying the hypotheses of Proposition 8.6.

Proof of Proposition 8.6: Recall that Φu = (cu, τu) is a BV -function, where cu(t) = (t, u(t)) and

|ċu| =
√
1 + |u̇|2 , τ0u :=

1

|ċu|
, τ ju :=

u̇j

|ċu|
, j = 1, . . . , N .

By means of a convolution argument, we may find a sequence vh = (v1h, . . . , v
N
h ) with vjh ∈ C∞(I) that

converges strongly in the BV -sense to (τ1u , . . . τ
N
u ), i.e. vjh → τ ju in L1(I) and

∫
I |v̇

j
h| dt → |Dτ ju|(I)

as h → ∞. Since moreover ‖u̇‖∞ < ∞, the vector (τ1u , . . . , τ
N
u ) belongs to BN (0, 1 − 2ε) for some

ε > 0, thus ‖vh‖∞ ≤ 1 − ε for large h and defining v0h :=
√
1− |vh|2 we similarly deduce that
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the sequence {v0h} ⊂ C∞(I) converges strongly in the BV -sense to τ0u , i.e. v0h → τ0u in L1(I) and∫
I |v̇0h| dt → |Dτ0u |(I). Moreover, we compute

v̇0h = − vh • v̇h√
1− |vh|2

.

Setting then for j = 1, . . . , N

wj
h(t) :=

vjh(t)√
1− |vh(t)|2

, ujh(t) := uj(a) +

∫ t

a

wj
h(s) ds , t ∈ I

we now check the following convergences as h→ ∞ :

i) wj
h → u̇j strongly in L1, for each j ;

ii) ujh(t) → uj(a) +

∫ t

a

u̇j(s) ds = uj(t) a.e. and strongly in L1(I) ;

iii)

∫

I

√
1 + |u̇h|2 dt →

∫

I

√
1 + |u̇|2 dt , hence uh → u in W 1,1(I,RN ) ;

iv)

∫

I

√
|v̇h|2 + (v̇0h)

2 dt→ |Dτu|(I) .

In fact, properties i) and ii) hold true by a.e. convergence, using Lebesgue theorem, and the convergence of
the integral in property iii) is similarly obtained, so that theW 1,1-convergence follows from an observation
in [1, Thm. 2.2], as a consequence of a continuity theorem by Reshetnyak. Finally, property iv) holds
true as the sequence (v0h, vh) : I → SN converges to τu strongly in the BV -sense.

We now claim that

|ċuh
| kuh

=

(
|v̇h|2 +

(vh • v̇h)2
1− |vh|2

)1/2

=
√
|v̇h|2 + (v̇0h)

2 . (8.5)

This claim concludes the proof, by property iv). In order to prove (8.5), we compute

u̇jh = wj
h =

vjh√
1− |vh|2

, üjh =
1

(1− |vh|2)3/2
{
(1− |vh|2) v̇jh + (vh • v̇h) vjh

}
.

Using that (1 + |u̇h|2) = (1 − |vh|2)−1, we thus have

|üh|2 (1 + |u̇h|2) =
1

(1− |vh|2)4
{
(1− |vh|2)2 |v̇h|2 + (2− |vh|2) (vh • v̇h)2

}

whereas

u̇h • üh =
vh • v̇h

(1− |vh|2)2
so that we get

|üh|2 (1 + |u̇h|2)− (u̇h • üh)2 =
1

(1− |vh|2)3
{
(1− |vh|2) |v̇h|2 + (vh • v̇h)2

}
.

Therefore, recalling formula (1.6), we obtain

kuh
:=

(
|üh|2(1 + |u̇h|2)− (u̇h • üh)2

)1/2

(1 + |u̇h|)3/2
=

{
(1− |vh|2) |v̇h|2 + (vh • v̇h)2

}1/2

and finally (8.5), using that |ċuh
| =

√
1 + |u̇h|2. �

Step 2: We prove the following
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Proposition 8.7 Let u ∈ E(I,RN ) ∩W 1,1. There exists a sequence {uh} ⊂W 1,∞(I,RN ) such that

Σuh
⇀ Σu weakly in D1(I × S

N ) and E0(Σuh
) → E0(Σu) (8.6)

as h→ ∞.

Now, weak convergence together with convergence in energy clearly yield convergence of {uh} to u
strongly in the BV -sense, whence in L1. Therefore, by Proposition 7.8 and a diagonal argument we deduce
that Proposition 8.7 implies the validity of Theorem 8.5 for the subclass of functions u ∈W 1,1(I,RN ).

Proof of Proposition 8.7: We shall use a truncation argument for τu. To this purpose, since
τu ∈ BV (I,RN+1), we recall that the left and right limits τu(t±) are everywhere well-defined, and that
both τu±(t) := τu(t±) ∈ SN+ are good representatives that agree outside an at most countable set. If
τ0u(t±) ∈]0, 1], then arctan |u̇(s)| → θ±u (t) ∈ [0, π/2[ as s→ t±, and the limit of u̇(s) as s→ t± is finite,
too. Otherwise, if τ0u(t±) = 0, then arctan |u̇(s)| → π/2 as s→ t±, and

lim
s→t±

|u̇(s)|√
1 + |u̇(s)|2

= 1 .

This time we again have the existence of the limit

u̇

|u̇| (t±) := lim
s→t±

u̇(s)

|u̇(s)| = lim
s→t±

√
1 + |u̇(s)|2
|u̇(s)| · (τ1u , . . . , τNu )(s) = lim

s→t±
(τ1u , . . . , τ

N
u )(s).

Therefore, we can write for every t ∈ I

τu(t±) =
(
cos θ±u (t), sin θ

±
u (t)

u̇

|u̇| (t±)
)
, θ±u (t) := lim

s→t±
arctan |u̇(s)| ∈ [0, π/2] .

Truncation. On account of the previous remark, we choose a positive and increasing sequence of angles
{θh} ր π/2 and we truncate the BV -function τu by setting L1-a.e.

τh(t) :=





τu(t) if θu(t) ∈ [0, θh](
cos θh, sin θh

u̇(t)

|u̇(t)|
)

if θu(t) ∈ [θh, π/2]

where we have set

θu(t) := θ+u (t) = θ−u (t) ,
u̇(t)

|u̇(t)| :=
u̇

|u̇| (t+) =
u̇

|u̇| (t−) .

Notice that if θu(t) ∈ [0, θh], then

τu(t) =
(
cos θu(t), sin θu(t)

u̇(t)

|u̇(t)|
)
, tan θu(t) = |u̇(t)| .

By dominated convergence, we obtain that τh → τu strongly in L1.

Approximating sequence. Define wh = (w1
h, . . . , w

N
h ) : I → RN by

wj
h(t) :=

τ jh(t)

τ0h(t)
, j = 1, . . . , N

so that wh(t) = u̇(t) if θu(t) ∈ [0, θh], and wh(t) = tan θh
u̇(t)

|u̇(t)| if θu(t) ∈ [θh, π/2]. By dominated

convergence we have

lim
h→∞

∫

I

√
1 + |wh|2 dt =

∫

I

√
1 + |u̇|2 dt ,
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whence wh → u̇ strongly in L1. Setting then uh : I → RN by

uh(t) := u(a) +

∫ t

a

wh(s) ds , t ∈ I = [a, b]

we clearly have that uh → u strongly in W 1,1, with {uh} ⊂ W 1,∞(I,RN ). Since Juh
= Ju = ∅ and

SJc
uh

= SJc
u = 0, on account of Proposition 7.8 we readily infer that the weak convergence with the energy

(8.6) holds true if we show that
lim
h→∞

|Dτuh
|(I) = |Dτu|(I) . (8.7)

Now, the above convergence of the total variation of the distributional derivatives follows from the
fact that actually τuh

= Λh ◦ τu for every h, where Λh : SN+ → SN+ is the smooth retraction function
with Lipschitz constant LipΛh = 1 defined by

Λh(y
0, ỹ) :=





(y0, ỹ) if y0 ≥ cos θh(
cos θh, sin θh

ỹ

|ỹ|
)

if y0 ≤ cos θh
y = (y0, ỹ) ∈ R× R

N

which concludes the proof of Proposition 8.7. �

Step 3: We now assume that u is BV and continuous. In the proof of Step 3 we make use of a result
which will be presented in the next section, but whose proof only uses Proposition 8.7 above. As before,
the Jump component DJu = 0, but this time in general the Cantor component DCu is non-trivial. By
Step 2 and a diagonal argument, it clearly suffices to show the existence of a sequence {uh} ⊂W 1,1(I,RN )
such that

lim
h→∞

∫

I

√
1 + |u̇h|2 dt =

∫

I

√
1 + |u̇|2 dt+ |DCu|(I) , (8.8)

{Σuh
} converges to Σu weakly in D1(U ×SN), and also (8.7) holds true. By the construction which will

be performed in Theorem 9.2, the above property follows from (9.4), on account of (9.2).

Remark 8.8 The convergence (8.7) in Step 3 extends to the higher codimension case the property
already observed in [8] when N = 1, namely that the occurrence of a Cantor part of Du does not give
a contribution to the relaxed energy.

We point out that the argument used at page 2369 of [8] is correct if one assumes in addition that
u is continuous. Otherwise, with the notation from [8], one cannot conclude in general that at the end
points of the interval I+kj the property “(u′)a∧ ≤ k” holds, if such end points belong to the Jump set of
u. The proof of [8, Thm. 2.5] may be modified by assuming at this point that u is continuous, and by
treating at the following step the general case when Ju 6= ∅.

Step 4: We finally remove the additional assumptions on u ∈ E(I,RN ) so that in general DJu 6= 0. By
Step 3 and a diagonal argument, it suffices to find a sequence of continuous functions {uh} ⊂ BV (I,RN )
such that

lim
h→∞

(∫

I

√
1 + |u̇h|2 dt+ |DCuh|(I)

)
=

∫

I

√
1 + |u̇|2 dt+ |DCu|(I) + |DJu|(I) (8.9)

and {Σuh
} converges to Σu weakly in D1(U ×SN ). Moreover, again by Proposition 7.8, the convergence

in energy holds true if we prove in addition that

lim
h→∞

|Dτuh
|(I) = |Dτu|(I \ Ju) +M(SJc

u ) . (8.10)

We first observe that it suffices to consider the case when the Jump set Ju is finite. In fact, if Ju is
countable, say Ju = {t1, t2, . . .}, setting Jh

u = {t1, . . . , th} one defines

ũh(t) := u+(a) +

∫ t

a

u̇(s) ds+DCu(]a, t[) +
∑

s<t , s∈Jh
u

[u](s) . (8.11)
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It is then readily checked that ũh → u strongly in L1, Σũh
⇀ Σu weakly in D1(U×SN), and E0(Σũh

) →
E0(Σu) as h → ∞. Therefore, since the Jump set Jũh

= Jh
u is finite for each h, a diagonal argument

will conclude the proof in the general case.
Assuming then that Ju is finite, we denote Ju = {ti}mi=1, where a := inf I < t1 < t2 < · · · < tm <

sup I =: b, and we let t0 = a, tm+1 = b. We then choose a decreasing sequence δh ց 0 such that

u̇ is continuous at ti ± δh and lim
h→∞

u̇(ti ± δh) = u̇±(ti) (8.12)

for i = 1, . . . ,m. Notice that for h large enough we have ti − ti−1 > 3δh for all i.
We now define uh : I → RN by the formula:

uh(t) :=





u+(a) +Du(]a, t[) in [a, t1 − δh]
u+(ti−1 + δh) +Du(]ti−1 + δh, t[) in [ti−1 + δh, ti − δh] , i ≥ 2
u+(tm + δh) +Du(]tm + δh, t[) in [tm + δh, b]

λ
(i)
h (t) in [ti − δh, ti + δh] , i ≥ 1 .

In the last line of the previous definition, for each i = 1, . . . ,m we have chosen the affine function

λ
(i)
h : [ti − δh, ti + δh] → R

N such that λ
(i)
h (ti ± δh) = u(ti ± δh).

The sequence of continuous functions {uh} ⊂ BV (I,RN ) converges to u strongly in L1, and the
convergence of the total variation (8.9) of cuh

is readily checked. The convergence Σuh
⇀ Σu weakly as

currents holds true once we show that (8.10) is satisfied. To this purpose, we observe that clearly

lim
h→∞

|Dτuh
|(I \ Ih) = |Dτu|(I \ Ju)

where we have set Ih :=
⋃m

i=1[ti − δh, ti + δh], so that (8.10) holds true if one has

lim
h→∞

|Dτuh
|(Ih) = M(SJc

u )

where the jump-corner term M(SJc
u ) is given by formula (5.13). Therefore, it suffices to show that

lim
h→∞

|Dτuh
|([ti − δh, ti + δh]) = H1(Γ+

ti(u)) +H1(Γ−
ti(u))

for i = 1, . . . ,m, where, we recall, Γ±
ti(u) denotes an oriented geodesic arc in {cu(ti±)}×SN+ with initial

point P±(ti), see (5.7), and final point Φu(ti±) = (ti, u(ti±), τu(ti±)).
Now, by the definition of uh on the interval [ti − δh, ti + δh], it turns out that the total variation

|Dτuh
|([ti − δh, ti + δh]) is equal to the sum of the two turning angles between the couples of vectors

(1, u̇(ti ± δh))

|(1, u̇(ti ± δh)|
,

(1, v±i,h)

|(1, v±i,h)|
where we have set

v±i,h :=
u(ti + δh)− u(ti − δh)

2δh
.

Since δh ց 0 we have

lim
h→∞

(1, v±i,h)

|(1, v±i,h)|
=

(
0,

[u(ti)]

|[u(ti)]|
)
,

whereas by (8.12) we deduce that

lim
h→∞

(1, u̇(ti ± δh))

|(1, u̇(ti ± δh)|
= τu(ti±) .

This yields that the total variation |Dτuh
|([ti − δh, ti + δh]) converges to the sum of the two turning

angles between the two couples of vectors

τu(ti±) ,
(
0,

[u(ti)]

|[u(ti)]|
)

that clearly agrees with the sum of the length of the two geodesic arcs Γ±
ti(u), as required. �
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9 Main results

This final section contains the main results of this paper. For greater clarity we shall postpone the proof
of the two main theorems below to the second part of the section.

Relaxed energy. Let N ≥ 1 and u ∈ E(I,RN ), i.e. u : I → RN is an L1-function with finite
relaxed energy E(u), see (1.11) and (4.1). Then u ∈ BV (I,RN ) and in Theorem 4.7 we showed that the
Gauss map τu : I → SN has bounded variation. Moreover, recalling the notation from (4.4) and (5.1),
by Theorem 8.5 we already know that Σu ∈ Gcart(U × SN ), and actually that Σu ∈ Gcartu, see (8.1).

By Theorems 8.1 and 8.5 we thus deduce that the relaxed energy of u is equal to the least energy
among all the currents in Gcart(U×SN) with underlying function uΣ = u, and that the energy minimum
is attained by the optimal current Σu :

Corollary 9.1 For every function u with finite relaxed energy we have

E(u) = min{E0(Σ) | Σ ∈ Gcartu} = E0(Σu) .

By using the explicit formula for E0(Σu) from Proposition 7.8, we readily obtain formula (0.6) from
the introduction:

∀u ∈ E(I,RN ) , E(u) = |Dcu|(I) + |Dτu|(I \ Ju) +M(SJc
u ) (9.1)

where the jump-corner term M(SJc
u ) is given by (5.13).

Continuous functions. In case of continuous functions, we shall prove the following theorem,
where we heavily exploit the geometric structure of the energy.

Theorem 9.2 Let u ∈ L1(I,RN ) be a continuous function. Then u has finite relaxed energy if and
only if the Cartesian curve cu has finite length and total curvature, i.e.

u ∈ E(I,RN ) ⇐⇒ L(cu) + TC(cu) <∞ .

In this case, moreover, the total variation |Dτu|(I) agrees with the total curvature TC(cu) of the Carte-
sian curve cu, i.e.

|Dτu|(I) = TC(cu) . (9.2)

Roughly speaking, the above result says that the total variation of the tantrix of a continuous function
u ∈ E(I,RN ) does not read jumps in presence of the Cantor part of the derivative DCu. Using the polar
decomposition DCu = gC |DCu|, where gC : I → SN−1 is a Borel function, this should imply that at
|DCu|-a.e. point t ∈ I one has (0, gC(t)) = τu(t) ∈ {0} × S

N−1. In the case of codimension N = 1, it is
easy to check that this last property is actually equivalent to property (b) from Definition 4.1. This will
be subject of further work.

Remark 9.3 The proof of Theorem 9.2 is postponed, and it only makes use of the results from Sec. 4
and of Proposition 8.7. Therefore, we were entitled to use it in Step 3 of the proof of Theorem 8.5.

As a consequence of Theorem 9.2, we readily obtain formula (0.5) from the introduction:

Corollary 9.4 For every continuous function u ∈ E(I,RN ) we have E(u) = L(cu) + TC(cu) .

Proof: In fact, clearly |Dcu|(I) = L(cu). Since moreover Ju = ∅, by (5.13) we infer that M(SJc
u ) = 0.

Also, by (9.2) we get |Dτu|(I \ Ju) = |Dτu|(I) = TC(cu). The claim follows from the general formula
(9.1). �

Functions with jumps. Let u ∈ BV (I,RN ) be possibly with discontinuities. We denote by c̃u
the oriented curve obtained by connecting the jumps in the graph of u with oriented line segments from
cu(t−) to cu(t+) at each point t ∈ Ju, so that its length is L(c̃u) = |Dcu|(I). Similarly to Theorem 9.2,
but this time using the density theorem 8.5, we shall then prove:
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Theorem 9.5 A function u ∈ L1(I,RN ) has finite relaxed energy if and only if the curve c̃u has finite
length and total curvature, i.e.

u ∈ E(I,RN ) ⇐⇒ L(c̃u) + TC(c̃u) <∞ .

In this case, moreover, we have

|Dτu|(I \ Ju) +M(SJc
u ) = TC(c̃u) . (9.3)

As a consequence of Theorem 9.5, we readily obtain the formula (0.7) from the introduction:

Corollary 9.6 For every function u ∈ E(I,RN ) we have E(u) = L(c̃u) + TC(c̃u) .

Proof: In fact, this time we clearly have |Dc̃u|(I) = L(c̃u). The claim follows from the general formula
(9.1), on account of (9.3). �

Proofs. It remains to prove Theorems 9.2 and 9.5.

Proof of Theorem 9.2: If u ∈ E(I,RN ) ∩ C0, we already know that u ∈ BV (I,RN ) and τu ∈
BV (I, SN ), whereas DJu = 0. Recalling Proposition 4.5 we find a Lipschitz function c : IL → U such
that |ċ(s)| = 1 a.e. and the image current c#[[ IL ]] agrees with the Cartesian current T (Σ) = Πx#Σ.
This yields that at H1-a.e. point x in the support of the oriented Cartesian curve cu the unit tangent
vector is equal to ċ(s) for some point s ∈ I such that c(s) = x. As a consequence, we may recover
the total variation of the tantrix of cu by means of the total variation of the derivative function ċ, see
Proposition 1.3, obtaining that

TC(cu) ≤ |Dċ|(IL) <∞ .

Since we already know that cu has bounded variation, this yields that for continuous functions

u ∈ E(I,RN ) =⇒ L(cu) + TC(cu) <∞ .

Assuming now that L(cu) + TC(cu) < ∞, and recalling the definition (1.4) of length and total
curvature, we choose for each h ∈ N+ a partition of the interval I with mesh of order at most 1/h,
say {thi }mh

i=1, with a = th0 , b = thmh
, and 0 < thi − thi−1 < 1/h for every i. By the uniform continuity

of cu, using the points cu(t
h
i ) we find for each h a polygon Ph inscribed in the curve cu such that

mesh(Ph) → 0. Therefore, by Proposition 1.2 we have L(Ph) → L(cu) and TC(Ph) → TC(cu).
Correspondingly, we define the continuous function uh : I → RN such that cuh

(thi ) = cu(t
h
i ) for all

i, and uh is affine in each interval [thi−1, t
h
i ] of the partition. It is readily checked that uh is a Sobolev

function in W 1,1(I,RN ), with

L(Ph) =

∫

I

√
1 + |u̇h|2 dt , TC(Ph) = |Dτuh

|(I) .

In fact, the total curvature of the Cartesian curve cuh
, i.e. the sum of the turning angles at the edges of

Ph, is equal to the total variation of the distributional derivative Dτuh
, as uh is piecewise affine.

Since the length of cu is given by

L(cu) =
∫

I

√
1 + |u̇|2 dt+ |DCu|(I) ,

this yields that

lim
h→∞

∫

I

√
1 + |u̇h|2 dt =

∫

I

√
1 + |u̇|2 dt+ |DCu|(I) , lim

h→∞
|Dτuh

|(I) = TC(cu) (9.4)

whereas clearly uh → u strongly in L1(I,RN ), by the Poincaré inequality.
Now, by Proposition 8.7 we deduce for each Sobolev function v∞ ∈W 1,1(I,RN )∩E(I,RN ) the exis-

tence of a sequence of smooth functions {vh} ⊂ C2(I,RN ) such that vh → v∞ strongly in W 1,1(I,RN )
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and E0(Σvh) → E0(Σv∞) as h → ∞. Since E0(Σvh) =
∫
I

√
1 + |v̇h|2 dt + |Dτvh |(I), the conver-

gence E0(Σvh ) → E0(Σv∞) together with vh → v∞ in W 1,1 imply that L(cvh) → L(cv∞) and
|Dτvh |(I) → |Dτv∞ |(I).

Applying this density property to each uh we find by a diagonal argument the existence of a sequence
of smooth functions {wh} ⊂ C2(I,RN ) such that wh → u strongly in the BV -sense, suph E(wh) < ∞,
and moreover

L(cwh
) → L(cu) , |Dτwh

|(I) → TC(cu) .

We have just shown the reverse implication: for each u ∈ L1(I,RN ) continuous

L(cu) + TC(cu) <∞ =⇒ u ∈ E(I,RN ) .

We now apply Proposition 4.5 to the function u and w.r.t. the sequence {wh}. Since Lh := L(cwh
) →

L(cu), and with our notation Lh → L, we correspondingly find that the Lipschitz function c : IL → U
satisfies L = L(cu). Using that |ċ| = 1 a.e., this implies that the support of the curve c(IL) agrees with
the support of the image current c#[[ IL ]], that is equal to the Cartesian current T (Σ) = Πx#(Σ). Again
by the convergence L(cwh

) → L(cu), we deduce that T (Σ) = Tu := Gu +GC
u .

We have thus obtained the equalities

c#[[ IL ]] = Tu = Gu +GC
u , M(c#[[ IL ]]) = L(cu) .

This yields that the gradient map s 7→ ċ(s) agrees H1-essentially with the tantrix of the Cartesian curve
cu, whence TC(cu) = |Dċ|(IL), by Proposition 1.3.

We finally show that |Dċ|(IL) = |Dτu|(I), which yields (9.2) and concludes the proof. For this
purpose, recall that in the proof of Theorem 4.7 we have proved the formula

∫

I

τu(t) • φ̇(t) dt = −〈Dċ, φ ◦ c0〉 ∀φ ∈ C1
c (I,R

N+1) . (9.5)

Since moreover the function c : IL → U is the arc-length parameterization of the continuous Cartesian
curve cu, recalling (4.9) we deduce that |IL \ ĨL| = 0, otherwise Ju 6= ∅, a contradiction. Therefore we
have ċ0(s) > 0 a.e. on IL, whence the function c0 : IL → I is strictly increasing, hence bijective. The

function c0 being Lipschitz, it turns out that its inverse c0
−1

: I → IL is continuous. Therefore,

φ ∈ C0
c (I,R

N+1) =⇒ φ̃ := φ ◦ c0 ∈ C0
c (IL,R

N+1)

and conversely

φ̃ ∈ C0
c (IL,R

N+1) =⇒ φ := φ̃ ◦ (c0)−1 ∈ C0
c (I,R

N+1) .

This yields that

|Dċ|(IL) := sup{〈Dċ, φ̃〉 | φ̃ ∈ C0
c (IL,R

N+1) , ‖φ̃‖∞ ≤ 1}
= sup{〈Dċ, φ ◦ c0〉 | φ ∈ C0

c (I,R
N+1) , ‖φ‖∞ ≤ 1}

= sup{〈Dċ, φ ◦ c0〉 | φ ∈ C1
c (I,R

N+1) , ‖φ‖∞ ≤ 1}

and hence by (9.5) we obtain:

|Dċ|(IL) = sup{〈τu, φ̇〉 | φ ∈ C1
c (I,R

N+1) , ‖φ‖∞ ≤ 1} = |Dτu|(I) ,

as required. �

Proof of Theorem 9.5: Assume that u ∈ E(I,RN ). By Theorem 8.5, we may and do apply
Proposition 4.5 to the current Σu ∈ Gcart(U × SN ) and w.r.t. the strongly converging sequence
{uh} ⊂ C2(I,RN ), so that E(uh) → E0(Σu). The Lipschitz function c : IL → U satisfies |ċ(s)| = 1
a.e. and the image current c#[[ IL ]] agrees with the Cartesian current Πx#Σu = Tu, see (2.1), so
that M(Tu) = |Dcu|(I) = L(c̃u). By lower semicontinuity of the energy functional, we deduce that
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L = M(Tu). Therefore, the function c : IL → U is the arc-length parameterization of the curve c̃u, and
hence |Dċ|(IL) = TC(c̃u), again by Proposition 1.3. Whence:

u ∈ E(I,RN ) =⇒ L(c̃u) + TC(c̃u) <∞ .

Assume now that L(c̃u)+TC(c̃u) <∞. Similarly as before, we choose for each h ∈ N+ a partition of
the set I\Ju with mesh of order at most 1/h, say {thi }mh

i=1, with a = th0 , b = thmh
, and 0 < thi −thi−1 < 1/h

for every i. Moreover, we denote by Jh the finite set of Jump points t ∈ Ju such that |[u(t)]| > 1/h. For
each t ∈ Jh, we divide the line segment with end points cu(t±) into a finite number of vertical segments
of length lower than 1/h. By using both the finite set in U given by the points cu(th), and the end
points of the vertical segments this way obtained, we clearly define a polygon Ph inscribed in the curve
c̃u such that mesh(Ph) → 0, so that L(Ph) → L(c̃u) and TC(Ph) → TC(c̃u), by Proposition 1.2.

Correspondingly, we define for each h the function uh : I → R
N that satisfies uh(t

h
i ) = u(thi ) for

all i, uh(t±) = u(t±) for every t ∈ Jh, and uh is affine inside each segment connecting two consecutive
points of the set Jh ∪ {thi }mh

i=0. It turns out that uh is a function in BV (I,RN ) with DCuh = 0,
Juh

= Jh, and actually uh ∈ E(I,RN ). Moreover, the related current Σuh
satisfies

E0(Σuh
) = |Dcuh

|(I) + |Dτuh
|(I \ Jh) +M(SJc

uh
)

and by the definition of uh one has:

L(Ph) = |Dcuh
|(I) , TC(Ph) = |Dτuh

|(I \ Jh) +M(SJc
uh
) .

We also check that the sequence {uh} converges to u strongly in the BV -sense, and Σuh
⇀ Σu

weakly in D1(U × SN ). Therefore, by applying to each uh the density theorem 8.5, and by a diagonal
argument, we find the existence of a sequence of smooth functions {wh} ⊂ C2(I,RN ) such that wh → u
strongly in the BV -sense, Σwh

⇀ Σu weakly in D1(U × SN ), and moreover

L(cwh
) → L(c̃u) , |Dτwh

|(I) → TC(c̃u) .

This proves the reverse implication

L(c̃u) + TC(c̃u) <∞ =⇒ u ∈ E(I,RN ) .

We now prove formula (9.3), and we first consider the case when Ju is a finite set. Going back to the
arc-length parameterization c previously defined, since |Dċ|(IL) = TC(c̃u), it suffices to prove that

|Dτu|(I \ Ju) +M(SJc
u ) = |Dċ|(IL) . (9.6)

Denoting Ju = {ti}mi=1, where a = inf I < t1 < t2 < · · · < tm < sup I = b, we find for each i a
closed interval IiL contained in IL such that c(IiL) parameterizes the straight line segment with end

points cu(ti±). Recalling the formula (9.5), and setting ÎL := IL \ ⋃m
i=1 I

i
L, arguing as in the proof of

Theorem 9.2 we deduce that ĨL ⊂ ÎL, see (4.9), and

|Dċ|(ÎL) = |Dτu|(I \ Ju) .
Moreover, for each i we also check:

|Dċ|(IiL) = H1(Γ+
ti(u)) +H1(Γ−

ti(u))

so that by using (5.13) we obtain the formula (9.6).
In the general case when Ju is countable, say Ju = {t1, t2, . . .}, setting Jh

u = {t1, . . . , th} we define
as in (8.11)

uh(t) := u+(a) +

∫ t

a

u̇(s) ds+DCu(]a, t[) +
∑

s<t , s∈Jh
u

[u](s) .

It is then readily checked that {uh} ⊂ E(I,RN ), whereas |Dτuh
|(I \ Juh

) → |Dτu|(I \ Ju), M(SJc
uh
) →

M(SJc
u ), and also TC(c̃uh

) → TC(c̃u) as h → ∞. Since we have already proved formula (9.3) for each
uh, passing to the limit we obtain (9.3) for u, as required. �
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