The role of lipids in maize - Fusarium verticillioides interaction and fumonisin production in natural field conditions were investigated. In 2010, ten maize hybrids were grown in fields located in 3 districts in Northern Italy and sampled at 4 growing stages, from early dough to full ripe. Chemical composition, fungal incidence and free and hidden fumonisin contamination were determined in all grain samples. All the hybrids considered within this study showed a strong fungal incidence, with Fusarium section Liseola as prevalent, already at the early dough maturity and along the ripening period. Fumonisins accumulated over the growing season and reached the maximum level at the full ripe stage; hidden fumonisins were found significant in all the considered samples (∼57% of the free form at harvest). Hybrid H9 showed more than 50% of kernels infected by Aspergillus flavus and no hidden fumonisins were detected. This finding stresses the relevance of monitoring both free and total fumonisins for a comprehensive assessment of consumer exposure to mycotoxins. Previous studies showed a positive correlation between the content of linoleic acid and fumonisin accumulation into maize kernels infected with Fusarium section Liseola. Hence, an untargeted and targeted lipid analysis of maize kernels along the growing season and at harvest was performed. Results suggested a significant involvement of lipid composition of maize kernels in fungal infection and toxin accumulation. Specifically, mass spectrometry data pinpointed that at least 4 lipid entities might differentiate highcontaminated from low-contaminated samples when the cut-off of 2,000 μg/kg of fumonisins was selected. Among them, the oxylipin 9-HODE and three sphingolipids were identified. These results suggest that sphingolipid and oxylipin metabolism in maize kernels interferes with F. verticillioides growth and fumonisin production in plants growing in field.

Maize lipids play a pivotal role in the fumonisin accumulation / Dall'Asta, Chiara; Giorni, P.; Cirlini, Martina; Reverberi, M.; Gregori, R.; Ludovici, M.; Camera, E.; Fanelli, C.; Battilani, P.; Scala, V.. - In: WORLD MYCOTOXIN JOURNAL. - ISSN 1875-0710. - 8:(2015), pp. 87-97. [10.3920/WMJ2014.1754]

Maize lipids play a pivotal role in the fumonisin accumulation

DALL'ASTA, Chiara;CIRLINI, Martina;
2015

Abstract

The role of lipids in maize - Fusarium verticillioides interaction and fumonisin production in natural field conditions were investigated. In 2010, ten maize hybrids were grown in fields located in 3 districts in Northern Italy and sampled at 4 growing stages, from early dough to full ripe. Chemical composition, fungal incidence and free and hidden fumonisin contamination were determined in all grain samples. All the hybrids considered within this study showed a strong fungal incidence, with Fusarium section Liseola as prevalent, already at the early dough maturity and along the ripening period. Fumonisins accumulated over the growing season and reached the maximum level at the full ripe stage; hidden fumonisins were found significant in all the considered samples (∼57% of the free form at harvest). Hybrid H9 showed more than 50% of kernels infected by Aspergillus flavus and no hidden fumonisins were detected. This finding stresses the relevance of monitoring both free and total fumonisins for a comprehensive assessment of consumer exposure to mycotoxins. Previous studies showed a positive correlation between the content of linoleic acid and fumonisin accumulation into maize kernels infected with Fusarium section Liseola. Hence, an untargeted and targeted lipid analysis of maize kernels along the growing season and at harvest was performed. Results suggested a significant involvement of lipid composition of maize kernels in fungal infection and toxin accumulation. Specifically, mass spectrometry data pinpointed that at least 4 lipid entities might differentiate highcontaminated from low-contaminated samples when the cut-off of 2,000 μg/kg of fumonisins was selected. Among them, the oxylipin 9-HODE and three sphingolipids were identified. These results suggest that sphingolipid and oxylipin metabolism in maize kernels interferes with F. verticillioides growth and fumonisin production in plants growing in field.
Maize lipids play a pivotal role in the fumonisin accumulation / Dall'Asta, Chiara; Giorni, P.; Cirlini, Martina; Reverberi, M.; Gregori, R.; Ludovici, M.; Camera, E.; Fanelli, C.; Battilani, P.; Scala, V.. - In: WORLD MYCOTOXIN JOURNAL. - ISSN 1875-0710. - 8:(2015), pp. 87-97. [10.3920/WMJ2014.1754]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2797801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact