In this note, we generalize our results in [6] to integer p-currents of any degree. We prove that if the mass of a current, as a functional of the ambient metric, has a critical or stable point in some special directions, then the current is complex. This holds for any dimension and codimension.

A variational characterization of complex submanifolds / Arezzo, Claudio; J., Sun. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 366:1-2(2016), pp. 249-277. [10.1007/s00208-015-1322-9]

A variational characterization of complex submanifolds

AREZZO, Claudio;
2016-01-01

Abstract

In this note, we generalize our results in [6] to integer p-currents of any degree. We prove that if the mass of a current, as a functional of the ambient metric, has a critical or stable point in some special directions, then the current is complex. This holds for any dimension and codimension.
2016
A variational characterization of complex submanifolds / Arezzo, Claudio; J., Sun. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 366:1-2(2016), pp. 249-277. [10.1007/s00208-015-1322-9]
File in questo prodotto:
File Dimensione Formato  
AS2-revised.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 397.01 kB
Formato Adobe PDF
397.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2673302
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact