In this note, we generalize our results in [6] to integer p-currents of any degree. We prove that if the mass of a current, as a functional of the ambient metric, has a critical or stable point in some special directions, then the current is complex. This holds for any dimension and codimension.
A variational characterization of complex submanifolds / Arezzo, Claudio; J., Sun. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 366:1-2(2016), pp. 249-277. [10.1007/s00208-015-1322-9]
A variational characterization of complex submanifolds
AREZZO, Claudio;
2016-01-01
Abstract
In this note, we generalize our results in [6] to integer p-currents of any degree. We prove that if the mass of a current, as a functional of the ambient metric, has a critical or stable point in some special directions, then the current is complex. This holds for any dimension and codimension.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AS2-revised.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
397.01 kB
Formato
Adobe PDF
|
397.01 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.