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A VARIATIONAL CHARACTERIZATION OF COMPLEX

SUBMANIFOLDS

CLAUDIO AREZZO, JUN SUN

Abstract. In this note, we generalize our results in [6] to integer p-currents of any degree.
We prove that if the mass of a current, as a functional of the ambient metric, has a critical
or stable point in some special directions, then the current is complex. This holds for any
dimension and codimension. We also study a natural functional on the space of currents
representing a fixed homology class, closely related to the first derivative of the Mass in
our new approach, detecting the deviation of a surface from being holomorphic.

Mathematics Subject Classification (2010): 53A10 (primary), 53D05 (secondary).

1. Introduction

In this paper we expand in various directions the study started in [6] about the relation-
ship between volume minimizers and holomorphic submanifolds of Kähler manifolds. Let
us recall that, while classically known that positively oriented chains of holomorphic sub-
manifolds are volume minimizers in their homology class thanks to Wirtinger’s Inequality,
the converse is by now known to be largely false (see e.g. [5], [3], [4] and [18]). On top
of this, and in fact not unrelated, the limitation about the positive orientation of volume
minimizers (which appears clearly when looking for example at two parallel flat discs in R4)
prevents this classical approach to be of much use in attacking various natural problems in
Algebraic Geometry.
This has indicated the need for the search for more refined functionals, more capable to
detect the holomorphic properties of their minimizers and at the same time to get rid of
this orientation problem so that any integral chain of holomorphic submanifolds becomes a
minimum among its competitors.
In [6] we proposed the following construction: consider a fixed immersion F of a surface
Σ inside (M2n, ω̄, JM ), a compact symplectic manifold with compatible almost complex
structure JM , and look at the space of potentials H = {ρ ∈ C∞(M,R) | ω̄ρ := ω̄ +
ddcρ tames JM}, which is clearly a nonempty open subset of C∞(M,R).
Given ρ ∈ H and ω̄ρ(t) = ω̄ρ + ddcϕ(t) which tames JM , we can associate a family of
Riemannian metrics ḡρ(t) on M given by

(1.1) ḡρ(t)(X,Y ) =
1

2
(ω̄ρ(t)(X, JMY ) + ω̄ρ(t)(Y, JMX)) .

(denote ḡρ = ḡρ(0)) and we then define

(1.2) A(ρ) = Area(F (Σ), F ∗(ḡρ)) =

∫
Σ
dµρ ,

Key words and phrases. current, stationary, stable, complex.
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2 CLAUDIO AREZZO, JUN SUN

where dµρ is the volume form of the induced metric gρ := F ∗(ḡρ).
We are then looking at the area functional not on the space of immersions but on the space
of metrics generated by potentials in H in the ambient manifold.

One of the main results in [6] was then

Theorem 1.1. Let (M2n, ω̄, J) be a compact symplectic manifold with compatible almost
complex structure J and F : Σ2 → M be an injective immersion. Set d : M → R any
smooth extension from a tubular neighborhood of F (Σ) to M of the distance function from
F (Σ), i.e. d(Q) = dist(Q,F (Σ)) for Q sufficiently near F (Σ). If

d

dt
|t=0A(ω̄ρ + tddc(

d2

2
)) = 0

for some ρ ∈ H, then the immersion is J-holomorphic. In particular, if the area functional
A has a critical point in H, then the immersion is J-holomorphic. Moreover this holds also
when F is not injective and has branch points (but one need more than one function to test
the critical property).

In fact the proof of this result shows that the regular part of a union of injectively immersed
surfaces is a chain of holomorphic submanifolds with possibly different orientations, and
indeed it is easy to check that fixing such an object the Area is constant on the set of
potentials (hence it has infinitely many critical points).

The first aim of this paper is to extend the above Theorem to higher dimensional subman-
ifolds. But equally important is to extend the setup described above to much less regular
objects, building in this way an existence problem in Geometric Measure Theory with some
hope of having a positive solution, very much in the spirit of the classical volume-minimizing
problem which led to Almgren’s celebrated Big Theorem ([2], [9], [10], [11]). The area func-
tional above gets then substituted by the Mass (again for a fixed object and moving metric!)
and Σ by an integer multiplicity p-current.
Recall that an integer current S is called complex, if µS-almost all tangent planes of S are
complex (see Definition 3.1). Since µS(SingS) = 0, in order to prove that an integer current
is complex, we only need to prove that the tangent space at each regular point is complex.

The main result of this paper is then the following

Theorem 1.2. Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible almost
complex structure JM and S ∈ Rp(M) be an integer p-current in M with p < 2n. If the
Mass has a critical point ρ ∈ H, then any embedded C2 component Sj of Reg(S) is complex.

We pay the price of allowing singular competitors in our generalized setting by loosing the
possibility of studying deformations of metrics in one specific direction (given by the distance
square function in Theorem 1.1). We believe that the C2 assumption is not necessary in
the above result in that even general C1 components will satisfy the same property, but it
naturally arises in our proof to construct some special test variations.

Thanks to Harvey-Shiffman ([16]) and Alexander’s results ([1]) in the case of integrable
complex structures, we immediately get the following

Corollary 1.3. If (M2n, ω̄, JM ) is Kähler, Reg(S) has all C2-components and the Mass
has a critical point in H, then p = 2k and S is a holomorphic k-chain, i.e. it is the current
of integration over a finite integral combination of holomorphic submanifolds.
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Of course, the integrability of the ambient complex structure is crucial in applying Harvey-
Shiffman-Alexander’s Theorem and the analogue questions in the non-integrable case are
subject of intensive and deep research (see e.g. Tian-Riviere [22]).
Almgren’s Big Theorem on the other hand easily implies the following

Corollary 1.4. Let (M2n, ω̄, JM , ḡ) be a compact symplectic manifold with compatible al-
most complex structure JM and S ∈ Rp(M) be an integer p-current in M with p < 2n.
Suppose the mass has a critical point ρ ∈ H and that S is area-minimizing in (M2n, ḡρ) in
the usual sense, then p = 2k and S is a holomorphic k-chain.

The above results show that the first variation of the Mass with varying metrics does detect
J-holomorphicity, but again as we proved for surfaces in our previous work, even the second
variation (without assuming to be at a critical point of course) does the same job:

Theorem 1.5. Let (M2n, ω̄, JM , ḡ) be a compact symplectic manifold with compatible almost
complex structure JM and S ∈ Rp(M) be an integer p-current in M with p < 2n. If the
mass has a stable point ρ ∈ H, then any embedded C2 component Sj of Reg(S) is complex.
In particular, if (M2n, ω̄, JM ) is Kähler, Reg(S) has all C2-components and the Mass has
a stable point in H, then p = 2k and S is a holomorphic k-chain.

As explained in our previous work [6], this approach is inspired by a classical work of
Lawson-Simons [17], where the ambient manifold is assumed to be projective and the class
of deformations of metrics where restricted to families coming from the action of the au-
tomorphism group of the projective space. In the Section 4 of this paper we extend, in
analogy with the results obtained in [6] for regular 2-dimensional objects, these results to
this much more general setting. We believe these results explain, in connection with Tian
celebrated approximation Theorem ([21]), the naturality of our approach.

All this suggests to study a new type functionals Fc defined on the space of immersions,
which come essentially from the integration of |J⊥|2, which is the first derivative in the
direction of the distance squared of the Mass functional studied up to now. Thus these
functionals can be used to detect the deviation of a submanifold from being holomorphic.
In the surface case, we compute the Euler-Lagrangian equation for Fc, and prove that
similar to minimal surface system, the equation with c > 1 is weakly elliptic, with null
directions coming from those directions tangential to the surface, i.e. the kernel of the
principle symbol arises from the diffeomorphisms of the submanfold. We also conclude that
any symplectic Fc-critical surface with c ≥ 1 in a Kähler-Einstein surface with nonnegative
scalar curvature must be holomorphic. One interesting and challenging problem is whether
Almgren’s Big Theorem is true for these functionals.

Aknowledgments: The first author wishes to thank C. De Lellis for pointing out ref-
erence [1] to our attention and him, G. De Philippis and E. Spadaro for many important
discussions. The first author was partially supported by FIRB Project RBFR08B2HY, and
wishes to thank CIRM-FBK (Trento) for providing an ideal working atmosphere.

2. Variational formulas for the Mass in a symplectic manifold

Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible almost complex struc-
ture JM . As in [6], let H = {ρ ∈ C∞(M,R) | ω̄ρ := ω̄ + ddcρ tames JM}, which is clearly a



4 CLAUDIO AREZZO, JUN SUN

nonempty open subset of C∞(M,R). Given ρ ∈ H and ω̄ρ(t) = ω̄ρ + ddcϕ(t) which tames
JM , we can associated a family of Riemanian metrics ḡρ(t) on M given by

(2.1) ḡρ(t)(X,Y ) =
1

2
(ω̄ρ(t)(X, JMY ) + ω̄ρ(t)(Y, JMX)) .

Denote ḡρ = ḡρ(0).

Let S be an Hp-measurable countably p-rectifiable set in M . Then we know that the
approximate tangent space TxS exists for Hp-a.e. x ∈ S. Actually, we can express S as the
disjoint union ∪∞j=0Sj ([13], [20]), where Hp(S0) = 0, Sj is Hp-measurable, and Sj ⊂ Nj ,

with Nj an embedded p-dimensional C1 submanifold of M . We have

TxS = TxNj , Hp − a.e. x ∈ Sj .

We will denote SingS = S0 and RegS = ∪∞j=1Sj . Then Hp(SingS) = 0, and RegS is

the disjoint union of pieces, each of which is a part of an embedded p-dimensional C1

submanifold of M .
Let S be an integer multiplicity p-current in (M, ḡρ) (27.1 of [20]). Namely, it can be
represented as

(2.2) S(ω) =

∫
S
〈ω(x), ξ(x)〉θ(x)dHp(x), ω ∈ ΛpM,

where S is anHp-measurable countably p-rectifiable subset of M , θ is a locallyHp-integrable
positive integer-valued function on S, and ξ : S → Λp(M) is an Hp-measurable function
such that for Hp-a.e. point x ∈ S, ξ(x) can be represented in the form τ1 ∧ · · · ∧ τp, where
τ1, · · · , τp form an orthonormal basis for the approximate tangent space TxS with respect
to the metric ḡρ. Furthermore, denote µS the Radon measure associated with the current
S, then we see that (26.7 and 27.1 of [20])

(2.3) dµS = θdHp,

and (2.2) can be written as

(2.4) S(ω) =

∫
S
〈ω(x), ξ(x)〉dµS(x), ω ∈ ΛpM.

We plan to compute the first and second variation formulas for the mass of the current
when the target metric varies by ω̄ρ(t) = ω̄ρ + ddcϕ(t). When the variation of the target
metric is induced by a vector field on M , the formulas are well-known. (See, for example,
Theorem 1 of [17].) In our case, ḡρ(t) are not induced by a vector field on M . So we need
to modify the argument. By Nash Embedding Theorem, we know that there exists a family
of isometric embeddings

(2.5) iρ(t) : (M2n, ḡρ(t))→ (RN , gNeuc),

i.e., iρ(t)
∗gNeuc = ḡρ(t). Here, gNeuc is the standard Euclidean metric on RN . (Actually, we

can take N = n(6n+11) if M is compact and N = n(2n+1)(6n+11) if M in noncompact.)
It is obvious that i(t) is smooth in t if ϕ(t) is. Then the mass of the current S with respect
to ḡρ(t) is given by (27.2 of [20])

(2.6) Mρ(t) = Mρ(iρ(t)]S) =

∫
S
JSiρ(t)dµS ,
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where JSiρ(t) is the Jacobian of iρ(t) relative to S, that is,

(2.7) JSiρ(t)(x) =
√
det(dSiρ(t)x)∗ ◦ dSiρ(t)x.

Here, dSiρ(t)x : TxS → RN is the gradient of iρ(t) restricting on S, which is well-defined

Hp-a.e. on S and (dSiρ(t)x)∗ : RN → TxS is its adjoint. (See section 12 of [20].) From
(2.6), we see that

(2.8)
d

dt
|t=0Mρ(t) =

∫
S

d

dt
|t=0JSiρ(t)dµS ,

and

(2.9)
d2

dt2
|t=0Mρ(t) =

∫
S

d2

dt2
|t=0JSiρ(t)dµS .

We will compute the integrand at the point x ∈ Sj for j ≥ 1, where Sj is a piece of a C1

submanifold of M . Then JSi(t) is well-defined near x. We take a local coordinate around
x. Namely, let W ⊂ Rp be an open set, and the coordinate on W is given by {x1, · · · , xp}.
Let Ψ : W → M be a C1 immersion such that Ψ(0) = x, Ψ(W ) = U ∩ Sj , for some open

set U ⊂ M containing x. Then TxSj is spanned by { ∂Ψ
∂xi

(0)}pi=1. We further assume that,

the coordinate {xi} is chosen so that {ei = ∂Ψ
∂xi

(0)} is an orthonormal basis of TxSj = TxS

with the induced metric by iρ(0) (thus orthonormal by the induced metric from (M, ḡρ)).
Note that (dSiρ(t)x)∗ ◦ dSiρ(t)x : TxS → TxS can be represented as a p × p matrix. It is
easy to check that(

(dSi(t)x)∗ ◦ dSi(t)x
)
ij

= gNeuc

(
∂(i(t) ◦Ψ)

∂xi
,
∂(i(t) ◦Ψ)

∂xj

)
= ḡρ(t)(

∂Ψ

∂xi
,
∂Ψ

∂xj
).

Note that we have ḡρ(0)( ∂Ψ
∂xi

(0), ∂Ψ
∂xj

(0)) = δij . Therefore, we have at x:

d

dt
|t=0JT iρ(t)(x) =

1

2

p∑
i=1

ḡ′ρ(0)(ei, ei)

and, as µS(S0) = 0, by (2.3), we have

(2.10)
d

dt
|t=0Mρ(t) =

1

2

p∑
i=1

∫
S
ḡ′ρ(0)(ei, ei)dµS .

Here, the integrand is an Hp-measurable function, and {ei}pi=1 is any orthonormal basis of
TxS with respect to the metric induced from ḡρ for Hp-a.e. x ∈ S.

If ḡρ(t) is given by (2.1), then we have

(2.11)
d

dt
|t=0Mρ(t) =

1

2

p∑
i=1

∫
S
ω̄′ρ(0)(ei, Jei)dµS .

If furthermore, we assume ω̄ρ(t) = ω̄ρ+ddcϕ(t) for a family of C2 functions ϕ(t) on M with
ϕ(0) ≡ 0, then we have

(2.12)
d

dt
|t=0Mρ(t) =

1

2

p∑
i=1

∫
S

(ddcψ)(ei, Jei)dµS ,
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where ψ = ∂ϕ(t)
∂t |t=0.

Similarly, by computing on the regular part of S and proceeding in the same way as for
smooth case (see [6] for p = 2), if

∂ϕ

∂t
|t=0 = ψ,

∂2ϕ

∂t2
|t=0 = η,

then we have

d2

dt2
|t=0Mρ(t) =

1

2

p∑
i=1

∫
S

[(ddcη)(ei, Jei)] dµS

−1

4

∑
1≤i<j≤p

∫
S

[(ddcψ)(ei, Jej) + (ddcψ)(ej , Jei)]
2 dµS

−1

4

∑
1≤i<j≤p

∫
S

[(ddcψ)(ei, Jei)− (ddcψ)(ej , Jej)]
2 dµS

+
p− 2

4

p∑
i=1

∫
S

[(ddcψ)(ei, Jei)]
2 dµS .(2.13)

For our later use, let’s recall the following simple facts:

Lemma 2.1. (1) For any smooth function ψ on M , we have

(2.14) dcψ = −dψ ◦ J.
(2) For any C2 function ψ on M and any tangent vector fields X,Y on M , we have

(2.15) (ddcψ)(X,Y ) = −(∇2
ψ)(X, JY ) + (∇2

ψ)(Y, JX) + 〈∇ψ, (∇Y J)X − (∇XJ)Y 〉.
Here, 〈·, ·〉 is any Riemannian metric on M and ∇ is its Levi-Civita connection.

3. Proof of the main results

In this section, we will prove that, each C2 component of an integer current in a symplectic
manifold for which the mass has a critical point or stable point is complex. In the following,
we will denote Rp(M) the space of integer multiplicity p-currents in M . Let us first recall
the definition of complex current.

Definition 3.1. Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible almost
complex structure JM . Then an integer p-current S is said to be complex if µS-almost all
tangent planes of S are complex, i.e., for µS-a.e. x ∈ S, (JM )x maps TxS onto itself.

Recall that when p = 2 and S is a smooth submanifold of (M2n, ω̄, J, ḡ), we can define
the Kähler angle of the surface ([8]). In the current case, we can also define this similarly.
The cosine of the Kähler angle of a rectifiable 2-current S = (S, θ, ξ) is a µS-measurable
function cosα : S → R such that for µS-almost all x ∈ S with ξx = e1∧e2, cosα = ω̄(e1, e2).
Here, {e1, e2} is any orthonormal basis of TxS.

Similar to the smooth case, we can easily see that
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Proposition 3.1. Let (M2n, ω̄, J, ḡ) be a compact symplectic manifold with compatible al-
most complex structure JM . A current S ∈ R2(M) is complex if and only if sinα vanishes
as a measurable function, namely, sinα(x) = 0 for µS-a.e. x ∈ S.

Now can now give the following

Definition 3.2. Given a current S ∈ Rp(M) in M , we say that the mass M has a critical
point ρ ∈ H if for any ϕ(t) ∈ H with ϕ(0) = ρ

d

dt
|t=0M(t) = 0.

Definition 3.3. Given a current S ∈ Rp(M) in M , we say that the mass M has a stable
point ρ ∈ H if

d2

dt2
|t=0M(t) ≥ 0

for any ϕ(t) ∈ H, ϕ(0) = ρ.

As before, let (M2n, ω̄ρ, JM , ḡρ) be a compact symplectic manifold with compatible almost
complex structure JM and S = (S, θ, ξ) be an integer p-current in M . We have shown

that, for ω̄ρ(t) = ω̄ρ + ddcϕ(t) with ∂ϕ
∂t |t=0 = ψ, the first variation formula is given by

(2.12). We already know that Hp(SingS) = 0, and RegS can be expressed as disjoint
unions RegS = ∪∞j=1Sj , where each component Sj (j ≥ 1) is contained in an embedded

p-dimensional C1 submanifold of M . Our main result in this section is as follows:

Theorem 3.2. Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible almost
complex structure JM and S ∈ Rp(M) be an integer p-current in M with p < 2n. If the
mass has a critical point ρ ∈ H, then any embedded C2 component Sj of RegS is complex.

Proof: By our assumption, for any x ∈ Sj , there exists a ball B3r(x) ⊂ M , such that
B3r(x) ∩ S = B3r(x) ∩ Sj is a C2 submanifold of M , and d(y, S) = d(y,B3r(x) ∩ Sj)
for y ∈ B2r(x). Here, the distance is measured by the metric ḡρ, and we will denote
d(y) = d(y, S). Then it is known that ξ = 1

2d
2 is a C2 function in B2r(x) for r small.

Taking a cutoff function ζ ∈ C∞0 (B2r(x)) on M , so that ζ ≡ 1 in Br(x). Then ψ = ζξ is a
C2 function on M with the property that: suppψ ⊂ B2r(x) and ψ = ξ = 1

2d
2 in Br(x). By

(2.15) and (2.12), we have

d

dt
|t=0Mρ(t) =

1

2

p∑
i=1

∫
S

[
(∇2

(ζξ))(ei, ei) + (∇2
(ζξ))(JMei, JMei)

]
dµS

+
1

2

p∑
i=1

∫
S
〈∇(ζξ), (∇JMeiJM )ei − (∇eiJM )JMei〉dµS .(3.1)

Note that by the choice of ξ, we have ξ = 0 and ∇ξ = 0 on B2r(x)∩Sj . Furthermore, ζ = 0
outside B2r(x). Therefore,

d

dt
|t=0Mρ(t) =

1

2

p∑
i=1

∫
Sj

[
ζ(∇2

ξ)(ei, ei) + ζ(∇2
ξ)(JMei, JMei)

]
dµS .
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Recall that (Proposition 2.5 of [6]) for any x0 ∈ Sj , Hess(ξ)(x0) represents the orthogonal
projection on the normal space to Sj at x0. Namely, for each U, V ∈ Tx0M and x0 ∈ Sj , we
have

(3.2) (∇2
ξ)(U, V )(x0) = 〈U⊥, V ⊥〉,

where Tx0M = Tx0Sj ⊕ Nx0Sj and U⊥ is the projection of U onto Nx0Sj . With ψ chosen
as above, we have

d

dt
|t=0Mρ(t)) =

1

2

p∑
i=1

∫
Sj

ζ
∣∣∣(JMei)⊥∣∣∣2 dµS .

In particular, by the definition of critical point, we have that (JM )⊥ = 0 on Br(x) ∩ Sj . In
particular, JM maps TxSj onto itself. As x ∈ Sj is arbitrary, by Definition 3.1, we see that
Sj is complex. Q.E.D.

Remark 3.3. In the proof of Theorem 3.2, we see that we actually only need the mass to
have a critical point along some special directions at each regular point. More precisely, at

each regular point, if the mass has a critical point in the direction d2

2 locally, then the tangent

space at this point is complex. When S is a closed C2 embedded submanifold of M , we can
define the function d2 globally in a neighborhood of Σ in M . In this case, we only need

one special direction d2

2 , and Theorem 3.2 reduces to a higher dimensional generalization
of Theorem 1.1.

Let us now recall the following definition due to Harvey and Shiffman (Definition 1.7 of
[16]):

Definition 3.4. Let (M2n, ω̄, JM , ḡ) be a compact Kähler manifold. A current T is said
to be a holomorphic k-chain in M , if it can be written as a finite sum T =

∑
nj [Vj ],

where each nj ∈ Z and V = ∪Vj is a pure p-dimensional subvariety of M with irreducible
components {Vj}.

Roughly speaking, a holomorphic k-chain is a locally finite integral combination of complex
subvariaties. It is known that (Proposition 3.1 of [16]), a positive holomorphic current is
homologically area-minimizing, while a holomorphic k-chain is stable in the usual sense.
It is obvious that a holomorphic k-chain is a complex 2k-current. The main result of
Harvey-Shiffman (Theorem 2.1 of [16]) says that a complex 2k-current S with dS = 0 and
H2k+1(suppS) = 0 is a holomorphic k-chain and later Alexander [1] removed the support
hypothesis.
Corollaries 1.3 and 1.4 follow then immediately (in the second case applying Almgren’s Big
Theorem) from our main result.

The case of a stable point can be easily handled thanks to

Proposition 3.4. If ρ ∈ H is a stable point of the mass M, then it is also a critical point
of the mass M.

Proof: To this end, we consider special path in H, which is given by ϕ(t) = ρ+ t2

2 η with
η ∈ C∞(M,R). In this case, we have ϕ′(0) = ψ = 0 and ϕ′′(0) = η. By (2.13), we have

d2

dt2
|t=0Mρ(t) =

1

2

p∑
i=1

∫
S

[(ddcη)(ei, Jei)] dµS
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Suppose ρ ∈ H is a stable point of the mass M, then by definition, d2

dt2
|t=0Mρ(t) ≥ 0 for

any ϕ(t) ∈ H, ϕ(0) = ρ. In particular, for ϕ1(t) = ρ+ t2

2 η and ϕ2(t) = ρ− t2

2 η, we have

1

2

p∑
i=1

∫
S

[(ddcη)(ei, Jei)] dµS ≥ 0

and

−1

2

p∑
i=1

∫
S

[(ddcη)(ei, Jei)] dµS ≥ 0.

In particular, we have

1

2

p∑
i=1

∫
S

[(ddcη)(ei, Jei)] dµS = 0

for every η ∈ C∞(M,R). By the first variation formula (2.12) and Definition 3.2, we see
that ρ is a critical point. Q.E.D.

Combining Proposition 3.4 and Theorem 3.2, we obtain:

Theorem 3.5. Let (M2n, ω̄, JM , ḡ) be a compact symplectic manifold with compatible almost
complex structure JM and S ∈ Rp(M) be an integer p-current in M with p < 2n. If the
mass has a stable point ρ ∈ H, then any embedded C2 component Sj of RegS is complex.

Remark 3.6. As in Remark 3.3, to obtain the conclusion of Theorem 3.5, we only need
to ask for the mass to have a stable point in the directions ±ψ around each regular point,

where ψ is defined in the proof of Theorem 3.2. ψ is essentially d2

2 locally.

Corollary 3.7. Let (M2n, ω̄, JM , ḡ) be a compact symplectic manifold with compatible al-
most complex structure JM and S ∈ Rp(M) be an integer p-current in M with p < 2n.
Suppose the mass has a stable point ρ ∈ H and that S is area-minimizing (M2n, ḡρ) in the
usual sense, then p = 2k and S is a holomorphic k-chain.

In particular, by Remark 3.3 and Remark 3.6, when Σ is a smooth manifold and F : Σ→M
is an injective immersion, Theorem 3.2 and Theorem 3.5 generalize the first two theorems
of [6] to arbitrary dimension and codimension. Note that, by definition, an immersion
F : Σ→M is ±JM -holomorphic if and only if F (S) is a complex current.

Corollary 3.8. Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible almost
complex structure J and F : Σp → M be an injective immersion. Set d : M → R any
smooth extension from a tubular neighborhood of F (Σ) to M of the distance function from
F (Σ), i.e. d(Q) = dist(Q,F (Σ)) for Q sufficiently near F (Σ). If

d

dt
|t=0A(ω̄ + tddc(

d2

2
)) = 0,

or
d2

dt2
|t=0A(ω̄ ± t2ddc(d

2

2
)) ≥ 0

for some ρ ∈ H, then the immersion is ±JM -holomorphic.

Remark 3.9. Comparing with Theorem 3.2 of [6] (with p = 2), we even do not need
the stable point to be compatible with respect to the almost complex structure JM here.
Moreover, for any immersion (without injectivity assumption), existence of critical points
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or stable points is enough to guarantee that the immersion is ±JM -holomorphic. In this
case we can not find one special direction as in the injective case.

Corollary 3.10. Let (M2n, ω̄, JM , ḡ) be a compact symplectic manifold with compatible
almost complex structure JM and F : Σp →M2n be an immersion with p < 2n. If p is odd,
then the area functional A does not have any critical point or stable point in H.

4. Approximation results

In order to understand the nature of the new stability previously introduced, we take any
holomorphic vector field V on a Kähler manifold M . Then V will generate a family of
holomorphic diffeomorphisms of M , denoted by Φt. We know that Φ∗t ω̄ = ω̄ +

√
−1∂∂̄ϕ(t)

for a family of smooth functions ϕ(t) on M . Furthermore, as V is a holomorphic vector
field, we know that if we denote ḡ(t) = Φ∗t ḡ, then (ω̄(t), ḡ(t), J) is a compatible triple for
each t. Note that the former (namely, ḡ(t) = Φ∗t ḡ) is in the classical category, while the
latter is in our category. In particular, if the area functional is stable in our sense, then
the second variation of the area functional in the classical sense is nonnegative when the
variation is induced by Φt.
In fact, we can say more about this, relating the classical case to our case. If we denote ϕ̇ =
ψ, and ϕ̈ = η, then in our language, the second variation formula is given by (2.13), where
ψ and η are two independent functions. However, when ϕ(t) is induced by a holomorphic
vector field V as above, we know that both ψ and η are determined by V . In fact, we have

√
−1∂∂̄ψ = LV ω̄,

√
−1∂∂̄η = LV (LV ω̄) = LV (

√
−1∂∂̄ψ),

which shows that ψ and η are not independent in this case. Actually, we can give more
precise relation between ψ and η. By Moser’s trick, it is easy to see that, if we take

X(t) = −1
2∇

t
ϕ̇(t) and Ψt the family of diffeomorphisms generated by X(t), then we have

Ψ∗t ω̄(t) = ω̄. Here, ∇t is the gradient taken with respect to the metric ḡ(t). In particular,
combining with the choice of ω̄(t), we see that we have Ψt = Φ−1

t . It is easy to see that

(4.1) V = −(Φt)∗X(t) =
1

2
(Φt)∗∇

t
ϕ̇(t).

Then we have V = −X(0) = 1
2∇ψ. Using this fact and taking derivative with respect to t

on both side of (4.1), we can obtain

(4.2)
d

dt
|t=0∇

t
ϕ̇(t) = 0.

Using the fact that ḡ(t)(U, V ) = ω̄(t)(U, JV ), we can finally get that

(4.3) dη = −(
√
−1∂∂̄ψ)(J∇ψ, ·).

The point we want to explore now is that one should not restrict only to holomorphic vector
fields on M , but to the effect any holomorphic vector field of an ambient projective space.
In fact, in the projective case looking at the space of metrics in a given cohomology class
induced by an embedding into projective spaces of increasing dimension (the so-called
Bergman space Bk), thanks to Tian’s celebrated approximation result ([21])) we know we
can approximate any potential in H and moreover such approximation is sufficiently strong
that we can also approximate tangent directions and accelerations of curves in H with
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corresponding objects in the Bergman spaces (this boils down to the uniformity of the
Tian-Yau-Zelditch expansion as noted in [12], Proposition 6).
This immediately implies that our stability can be thought as the limit of the stability of
the volume functional of the triple (Σ ⊂M ⊂ CPNk), i.e. when restricted to the Bergmann
space of degree k. This gives the following

Theorem 4.1. If for any k sufficiently big there exists a function ρk ∈ Bk s.t. ρk is a stable
point for M|Bk

and ρk converges to ρ is H, then ρ is a stable point for M.

It is then natural to ask whether the existence of a stable point of M|Bk
for a given fixed k is

enough to guarantee our conclusion. That’s the problem we address in the next subsections
under various conditions (for p = 2).

4.1. Algebraic case (Lawson-Simons [17]). Let us now assume that the target manifold
is an algebraic manifold that embeds into some complex projective space CPN holomor-
phically and isometrically, namely that there is an embedding

ι : (M, ω̄, J, ḡ)→ (CPN , ωFS , JFS , gFS),

which is holomorphic, such that

(4.4) ι∗ωFS = ω̄, ι∗gFS = ḡ.

Denote by HN and KN the space of holomorphic vector fields and Killing vector fields on
CPN . Then it is well-known that HN = KN ⊕ JKN . Given any W ∈ JKN , it will generate
a one parameter family of diffeomorphisms Φt of CPN . It is known that there exists a
family of smooth functions φ(t) on CPN , such that ω̃(t) = Φ∗tωFS = ωFS + ddcφ(t). Set
ϕ(t) = φ(t) ◦ ι, which is a family of smooth functions on M . Set ϕ̇ = d

dt |t=0ϕ(t).

Definition 4.1. Given a current S ∈ Rp(M) in M , we say that the mass M has a linearly
projectively stable point at ρ ∈ H if ω̄ρ is projectively induced and

d2

dt2
|t=0M(t) ≥ 0

for any ω̄ρ(t) = ω̄ρ + tddcϕ̇, where ϕ(t) is defined with ω̄ replaced by ω̄ρ as above.

We can then give a new more geometric proof of the following result of [17] (in fact they
proved it without restrictions on p) :

Theorem 4.2. Let (M, ω̄, J, ḡ) be an algebraic manifold with all structures induced by the
projective space as above and S ∈ R2(M) be a current in M . If the mass has a linearly
projectively stable point, then the current S is a holomorphic 1-chain.

Proof: As J is compatible with any Kähler metric in [ω̄], without loss of generality, we
assume that ρ ≡ 0 so that ω̄ρ = ω̄. Recall that for ω̄(t) = ω̄ + tddcψ, the second variation
formula is given by (see (2.13))

d2

dt2
|t=0M(t) = −1

4

∫
S
D2

1dµS −
1

4

∫
S
D2

2dµS ≥ 0,

where

D1 = sinα[−(ddcψ)(e1, e4) + (ddcψ)(e2, e3)], D2 = sinα [(ddcψ)(e1, e3) + (ddcψ)(e2, e4)] .
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By the choice of ψ, we can see that (see Section 4 of [6])

D2(W ) = −2 sinα
[
〈∇Nẽ1V, ẽ3〉+ 〈∇Nẽ2V, ẽ4〉

]
.

We know that cosα is well-defined and continuous on RegS. Now, we by our assumption,
we see that

D2(W ) = 0, on Mj , j ≥ 1.

Using Lemma 4.2 of [6], similar to the proof for smooth case, we see that we must have
sinα = 0 on RegS. As H2(SingS) = 0, we have µS(SingS) = 0. Therefore, we see that
sinα = 0 µS-a.e. on S. By Proposition 3.1, we see that the current is complex. Then the
conclusion follows from Harvey-Shiffman-Alexander’s Theorem. Q.E.D.

4.2. Symplectic case with rational class. Let (M2n, ω̄, ḡ, JM ) be a compact symplectic
manifold with symplectic form ω̄, compatible almost complex structure JM and associated
Riemannian metric ḡ, such that for any X,Y ∈ TM ,

(4.5) ḡ(X,Y ) = ω̄(X,JMY ).

Since ω̄ defines a rational cohomology class, by a Theorem of Borthwick and Uribe (Theorem
1.1 of [7]), we known that there exists a sequence of embeddings

(4.6) ιk : M → (CPNk , ωFS , gFS , JFS),

such that, if we put

(4.7) ω̄k = ι∗kωFS , ḡk = ι∗kgFS ,

then for k ≥ k0

(4.8)

∣∣∣∣∣∣∣∣1k ω̄k − ω̄
∣∣∣∣∣∣∣∣
C0

≤ C1

k
,

and

(4.9)

∣∣∣∣∣∣∣∣1k ḡk − ḡ
∣∣∣∣∣∣∣∣
C0

≤ C2

k
,

for some constants C1 and C2 and large integer k0.

Let S be an integer multiplicity p-current in M . Denote α and αk the Kähler angle of RegS
in (M2n, ω̄, ḡ, JM ) and (CPNk , ωFS , gFS , JFS), respectively. More precisely, for x ∈ RegS,
let {e1, e2} be an orthonormal basis of TxS with respect to the induced metric from ḡ,
and {e1,k, e2,k} be any orthonormal basis of TxS with respect to the induced metric from

ḡk = ι∗kg
k
FS , then

cosα(x) = ω̄(e1, e2)(x), cosαk(x) = ω̄k(e1,k, e2,k)(x).

We can take

e1,k =
e1

|e1|ḡk
, e2,k =

e2 − ḡk(e2, e1,k)e1,k

|e2 − ḡk(e2, e1,k)e1,k|ḡk
.

By (4.8) and (4.9), we see that

(4.10) cosαk(x)→ cosα(x), sinαk(x)→ sinα(x) for x ∈ regS.

Set Kk the space of Killing vector fields on CPNk . Given any holomorphic vector field
W ∈ JFSKk, let Φt be the one-parameter family of diffeomorphisms generated by W . Set
ωk(t) = Φ∗tωFS = ωFS + ddcFSϕ(t) for a family of smooth functions ϕ(t) on CPNk .
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Note that 1
k ω̄k and ω̄ are in the same cohomology class. Thus, there exists a smooth one

form γk on M , such that ω̄ = 1
k ω̄k + dγk. We consider a family of projectively induced

symplectic forms on M given by

ω̄(t) =
1

k
ι∗kωk(t) =

1

k
ι∗kΦ
∗
tωFS =

1

k
ω̄k + d(

1

k
ι∗kd

c
FSϕ(t)) ≡ ω̄ + dβk(t),

where βk(t) = 1
k ι
∗
kd
c
FSϕ(t)− γk is a family of smooth 1-forms on M .

Definition 4.2. Given a current S ∈ Rp(M) in M , we say that M has a compatible
linearly Mk-stable point at ρ ∈ H if ω̄ρ is compatible with J and

d2

dt2
|t=0M(t) ≥ 0

for any ω̄(t) = ω̄+ tdβ̇k, where βk(t) is defined with ω̄ replaced by ω̄ρ in the above construc-
tion.

Similar to the proof of Theorem 5.1 in [6] and the proof of Theorem 4.2 above, we can show
that:

Theorem 4.3. Let (M2n, ω̄, JM , ḡ) be a symplectic manifold as above and S ∈ R2(M) be
a current in M . There exists an integer K1, such that if the mass has a compatible linearly
Mk-stable point for some k ≥ K1, then the current S is holomorphic 1-chain.

4.3. Kähler case with possibly non rational Kähler class. We now assume that
(M,J) is an algebraic manifold, that is, a submanifold of some complex projective space.
When [ω̄] is a rational class and ḡ is the metric induced by the Fubini-Study metric, we
showed in Sections 4.1 that, existence of linearly projectively stable point also implies
holomorphicity. In this subsection we allow [ω̄] to be any real Kähler class and ḡ any J-
induced metric. Take any Kähler metric ω̄ on M with [ω̄] ∈ H2(M,R) ∩H1,1(M,C). Let
ḡ be the Riemannian metric associated to ω̄ and J .

As (M,J) is an algebraic manifold it is easy to see that there exists a sequence of Kähler
forms τm with [τm] ∈ H2(M,Q) ∩H1,1(M,C), such that

(4.11) ||τm − ω̄||C2 ≤ εm,

with εm → 0 as m→∞. Here, the C2 norm is taken with respect to the metric ω̄. Since [τm]
is rational, there exists, for every m ∈ N, a holomorphic line bundle (Lm, hm)→M carrying

a hermitian connection Dm of curvature
√
−1

2π D2
m = τm. In particular, c1(Lm) = [τm].

For each positive integer k > 0, the hermitian metric hm induces a hermitian metric hkm
on Lkm. Choose an orthonormal basis {Skm,0, · · · , Skm,Nm,k

} of the space H0(M,Lkm) of all

holomorphic global sections of Lkm. Here, the inner product on H0(M,Lkm) is the natural
one induced by the Kähler metric τm and the hermitian metric hkm on Lkm. By Kodaira
embedding theorem, there exists an integer km,0 such that if k ≥ km,0, then such a basis

induces a holomorphic embedding Ψm,k of M into CPNm,k given by

(4.12) Ψm,k : M → CPNm,k , Ψm,k(z) := [Skk,0(z) : · · · : Skm,Nk,m
(z)].
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Let ωFS be the standard Fubini-Study metric on CPNm,k . Then 1
kΨ∗m,kωFS is a Kähler

form on M which lies in the same Kähler class as τm. We call 1
kΨ∗m,kωFS the Bergman

metric. A famous Theorem proved by Tian ([21]) tells us that

(4.13)

∣∣∣∣∣∣∣∣1kΨ∗m,kωFS − τm
∣∣∣∣∣∣∣∣
C2

≤ C√
k
.

Here the C2 norm is taken with respect to the metric τm and the constant C depends on
τm. Because of (4.11), we can assume that the constant is uniformly bounded with respect
to m. Although the Bergman metric 1

kΨ∗m,kωFS depends on the Kähler metric τm, the set
of Bergman metrics

(4.14) Pm,k :=

{
1

k
Ψ∗m,kσ

∗(ωFS)|σ ∈ Aut(CPNm,k)

}
,

is independent of the choice of τm in [τm] and Pm := ∪∞k=1Pk,m is dense in [τm]∩Ka(M) in
the C2-topology induced by the one on Λ2M . Here, Ka(M) is the space of Kähler metrics
on M . It is known that Pm,k has finite dimension for each k and m. Set

(4.15) Qm :=

{
1

k(m)
Ψ∗m,k(m)σ

∗(ωFS)|σ ∈ Aut(CPNm,k(m))

}
,

where k(m) ≥ km,0 is a sequence of integers such that k(m)→∞ as m→∞.

Define

Bm := {ω̄} − {τm}+Qm =

{
ω̄ − τm +

1

k(m)
Ψ∗m,k(m)σ

∗(ωFS)|σ ∈ Aut(CPNm,k(m))

}
Then Bm is a finitely dimensional submanifold of [ω̄]. In particular, for any σ(t) ⊂
Aut(CPNm,k(m)), there exists a smooth function ϕ(t) on M , such that

(4.16) ω̄(t) := ω̄ − τm +
1

k(m)
Ψ∗m,k(m)σ(t)∗(ωFS) = ω̄ + 2

√
−1∂∂̄ϕ(t) = ω̄ + ddcϕ(t).

Definition 4.3. Given a current S ∈ Rp(M) in M , we call the mass M has an m-
linearly projectively stable point at ρ ∈ H if there exists a smooth function ρ on M ,
such that ω̄ρ ∈ Ka(M) and

d2

dt2
|t=0M(t) ≥ 0

for any ω̄(t) = ω̄ + tddcϕ̇, where ϕ(t) is given with σ(0) = id and ω̄ replaced by ω̄ρ in the
above construction.

Similar to the proof of Theorem 6.1 in [6] and the proof of Theorem 4.2 above, we can show
that:

Theorem 4.4. Let (M,J) be an algebraic manifold, ω̄ be any Kähler metric and S ∈ R2(M)
be a current in M . Then there exists an integer K, such that if the mass has an m-linearly
projectively stable point at ρ ∈ H for some m ≥ K, then the current S is holomorphic
1-chain.
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5. Fc-functional

All we have seen up to now naturally induces to study a new type of functionals which
measure the deviation of a surface from a holomorphic curve. We will carry out this analysis
which resembles what Han-Li have done in [14] and [15] for a different type of functionals
defined on the space of symplectic surfaces in a 4-manifold.

Let M2n be a compact Kähler manifold with Kähler form ω̄, complex structure J , and
compatible Kähler metric ḡ, such that for any U, V ∈ TM ,

(5.1) ḡ(U, V ) = ω̄(U, JV ).

Let Σ be a compact real surface. Fix an immersion

F : Σ→ (M, ḡ).

We consider the functional

(5.2) F0(Σ) :=
1

2

∫
Σt

|J⊥|2dµ.

Notice that this precisely (up to a multiple) the functional associated to every embedded Σ
when computing the first derivative of the Mass in the direction of the distance squared.
Fix a point x ∈ Σ, it is easy to see that we can choose a ḡ-orthonormal frame {e1, e2, e3, · · · , e2n}
of TxM , such that {e1, e2} spans the tangent space of Σ, {e3, · · · , e2n} spans the normal
space of Σ, and the complex structure takes the form

(5.3) J =

(
(J1)4×4 04×(2n−4)

0(2n−4)×4 (J2)(2n−4)×(2n−4)

)
,

where

(5.4) J1 =


0 cosα sinα 0

− cosα 0 0 − sinα
− sinα 0 0 cosα

0 sinα − cosα 0

 ,

and J2 = diag

((
0 1
−1 0

)
, · · · ,

(
0 1
−1 0

))
. From (5.3), we can easily see that

(5.5) |J⊥|2 =

2n∑
α=3

2∑
i=1

(ḡ(Jei, eα))2 = 2 sin2 α.

Therefore, actually we have

(5.6) F0 =

∫
Σ

sin2 αdµ.

For our later use, it natural and does not matter to add a constant in the integrand and we
will consider the functional

(5.7) Fc(Σ) =

∫
Σ

(c+ sin2 α)dµ =

∫
Σ

(c+ 1− cos2 α)dµ, c ∈ R.
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5.1. The first variation formula. In this subsection, we first compute the first variation
formula. Given a family of immersions

Ft : Σ× (−δ, δ)→M.

At a fixe point x ∈ Σ, let {xi} be the normal coordinate on Σ around x. The induced metric
on Ft(Σ) is

gij(t) = 〈∂Ft
∂xi

,
∂Ft
∂xj
〉.

For simplicity, we denote ∂F0
∂xi

by ei, gij(t) by gij and Ft by F . Suppose V = ∂Ft
∂t |t=0 is the

variational vector field. Then it is easy to see that

(5.8)
∂

∂t
|t=0 gij = 〈∇eiV, ej〉+ 〈ei,∇ejV〉.

Since

(5.9) cosαt =
ω̄( ∂F∂x1 ,

∂F
∂x2

)√
det(gij)

,

we have

(5.10) Fc(Ft) =

∫
Σ

(c+ 1) det(gij)− ω̄2( ∂F∂x1 ,
∂F
∂x2

)√
det(gij)

dx1 ∧ dx2.

Denote

(5.11) Ic =
(c+ 1) det(gij)− ω̄2( ∂F∂x1 ,

∂F
∂x2

)√
det(gij)

.

Then using (5.8), we can easily get

(5.12)
∂Ic
∂t
|t=0= (c+ 1 + cos2 α)〈∇eiV, ei〉 − 2 cosα(ω̄(∇e1V, e2) + ω̄(e1,∇e2V)).

Therefore, we have

(5.13) F ′c(0) =

∫
Σ

[(c+ 1 + cos2 α)〈∇eiV, ei〉 − 2 cosα(ω̄(∇e1V, e2) + ω̄(e1,∇e2V))]dµ.

In order to obtain Euler-Lagrangian equation for the functional V, we suppose the varia-
tional vector field V is a normal vector field. Then we have by (5.13)

F ′c(0) = −
∫

Σ
(c+ 1 + cos2 α)〈V,H〉dµ− 2

∫
Σ

cosα(ω̄(∇e1V, e2) + ω̄(e1,∇e2V))dµ

= −
∫

Σ
(c+ 1 + cos2 α)〈V,H〉dµ

−2

∫
Σ

cosα
(
e1[ω̄(V, e2)] + e2[ω̄(e1,V)] + ω̄(V,∇e2e1 −∇e1e2)

)
dµ

= −
∫

Σ
(c+ 1 + cos2 α)〈V,H〉dµ+ 2

∫
Σ

[ω̄(V, e2)∇e1 cosα+ ω̄(e1,V)∇e2 cosα]dµ

=

∫
Σ
〈V, 2J(∇e2 cosαe1 −∇e1 cosαe2)− (c+ 1 + cos2 α)H〉dµ.(5.14)

Therefore, the Euler-Lagrangian equation is given by

(5.15) (c+ 1 + cos2 α)H + 2(J(∇e1 cosαe2 −∇e2 cosαe1))⊥ = 0.
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We call a surface satisfying (5.15) an Fc-critical surface.

Using (5.3), we can easily obtain that ([14])

(5.16) (J∇ cosα)T = (∇e1 cosαe2 −∇e2 cosαe1) cosα.

If we further assume that Σ is simplectic, i.e., cosα > 0, then we see from (5.16) that (5.15)
is equivalent to

(5.17) cosα(c+ 1 + cos2 α)H + 2(J(J∇ cosα)T )⊥ = 0.

It is known that the minimal surface equation H = 0 is a weakly elliptic system, where
the kernel of the principle symbol arises from the diffeomorphisms of Σ. By computing
the principle symbol of the equation (5.15), we can obtain the following for the Fc-critical
equation:

Proposition 5.1. The equation (5.15) is an elliptic system modulo the diffeomorphisms of
Σ for c > 1.

We will present the proof of the proposition in the appendix.

5.2. Elliptic equation of Kähler angle on Fc-critical surfaces. In this subsection, we
will compute the elliptic equation satisfied by cosα on a Fc-critical surface. We assume
that M is a Kähler surface, i.e., n = 2. Let’s first recall the following result proved in [14]:

Proposition 5.2. Let M be a Kähler surface with Kähler form ω̄ and let J be the complex
structure compatible with ω on M . If Σ is a surface which is smoothly immersed in M with
Kähler angle α, then

∆ cosα = cosα(−|h3
1k − h4

2k|2 − |h4
1k + h3

2k|2)

+ sinα(H4
,1 +H3

,2)−Ric(Je1, e2) sin2 α,(5.18)

where Ric is the Ricci curvature tensor of (M, ḡ) and Hα
,i = 〈∇̄NeiH, vα〉.

The main result in this subsection is as follows:

Theorem 5.3. Suppose that M is a Kähler surface and Σ is an Fc-critical surface in M
with Kähler angle α. Then we have

(3 cos2 α+ c− 1)∆ cosα = −2(c2 + 2c+ 3) cosα+ 4(c− 1) cos3 α+ 6 cos5 α

c+ 1 + cos2 α
|∇α|2

− sin2 α(c+ 1 + cos2 α)Ric(Je1, e2).(5.19)

In particular, if M is a Kähler-Einstein surface with scalar curvature R, then

(3 cos2 α+ c− 1)∆ cosα = −2(c2 + 2c+ 3) cosα+ 4(c− 1) cos3 α+ 6 cos5 α

c+ 1 + cos2 α
|∇α|2

−R
4

sin2 α cosα(c+ 1 + cos2 α).(5.20)

Proof: Note that the we can choose local coordinate around the fix point p such that
at p, the complex structure J takes the form of (5.4). However, we can not assure that it
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is of this form in a neighborhood of p. Since we will take derivatives with respect to the
components of J , so around p, we assume that J takes the form

J =


0 x y z
−x 0 z −y
−y −z 0 x
−z y −x 0

 ,(5.21)

where x2 + y2 + z2 = 1. By definition of the Kähler angle, we know that

x = cosα = ω(e1, e2) = 〈Je1, e2〉.
Note also that at the fixed point p, we have that y = sinα and z = 0. Now we have around
p that

(J(∇e1 cosαe2 −∇e2 cosαe1))⊥ = ∂1 cosα(Je2)⊥ − ∂2 cosα(Je1)⊥

= − sinα∂1α(ze3 − ye4) + sinα∂2α(ye3 + ze4)

= sinα(y∂2α− z∂1α)e3 + sinα(y∂1α+ z∂2α)e4.

Combining this with (5.15), we finally get that

(5.22) H3 = − 2 sinα

c+ 1 + cos2 α
(y∂2α− z∂1α), H4 = − 2 sinα

c+ 1 + cos2 α
(y∂1α+ z∂2α).

Furthermore,

∂1 cosα = ω(∇̄e1e1, e2) + ω(e1, ∇̄e1e2)

= hβ11〈Jeβ, e2〉+ hβ12〈Je1, eβ〉
= (h4

11 + h3
12)y + (h4

12 − h3
11)z.(5.23)

Similarly, we can get that,

∂2 cosα = (h3
22 + h4

12)y + (h4
22 − h3

12)z.(5.24)

In particular, at p, we have

(5.25) ∂1α = −(h4
11 + h3

12), ∂2α = −(h3
22 + h4

12).

If we set V = ∂2αe3 + ∂1αe4, then by direct computation, we have at p

|h3
1k − h4

2k|2 + |h4
1k + h3

2k|2 = |H|2 + 2|V|2 + 2H ·V

=

(
4 sin4 α

(c+ 1 + cos2 α)2
+ 2− 4 sin2 α

c+ 1 + cos2 α

)
|∇α|2

=
2(c2 + 1) + 4(2c− 1) cos2 α+ 10 cos4 α

(c+ 1 + cos2 α)2
|∇α|2.(5.26)

Furthermore, using (5.22), we have at p,

sinα(H4
,1 +H3

,2) = sinα(〈∇̄e1H, e4〉+ 〈∇̄e2H, e3〉)
= sinα(∂1(H4) +H3〈∇̄e1e3, e4〉+ ∂2(H3) +H4〈∇̄e2e4, e3〉)

= − sinα

{
∂1[

2 sinα

c+ 1 + cos2 α
(y∂1α+ z∂2α)]

+∂2[
2 sinα

c+ 1 + cos2 α
(y∂2α− z∂1α)]

}
+ sinα(H3〈∇̄e1e3, e4〉+H4〈∇̄e2e4, e3〉)



A VARIATIONAL CHARACTERIZATION OF COMPLEX SUBMANIFOLDS 19

= − sin2 α

[
∂1(

2 sinα

c+ 1 + cos2 α
∂1α) + ∂2(

2 sinα

c+ 1 + cos2 α
∂2α)

]
− 2 sin2 α

c+ 1 + cos2 α
(∂1α∂1y + ∂2α∂2y)− 2 sin2 α

c+ 1 + cos2 α
(∂2α∂1z − ∂1α∂2z)

+ sinα(H3〈∇̄e1e3, e4〉+H4〈∇̄e2e4, e3〉)

= − 2 sin3 α

c+ 1 + cos2 α
∆α− 2(c+ 3) cosα− 2(c+ 4) cos3 α+ 2 cos5 α

(c+ 1 + cos2 α)2
|∇α|2

− 2 sin2 α

c+ 1 + cos2 α
(∂1α∂1y + ∂2α∂2y)− 2 sin2 α

c+ 1 + cos2 α
(∂2α∂1z − ∂1α∂2z)

+ sinα(H3〈∇̄e1e3, e4〉+H4〈∇̄e2e4, e3〉).(5.27)

From y = 〈Je1, e3〉, we have at p,

∂1α∂1y + ∂2α∂2y = ∂1α(〈J∇̄e1e1, e3〉+ 〈Je1, ∇̄e1e3〉) + ∂2α(〈J∇̄e2e1, e3〉+ 〈Je1, ∇̄e2e3〉)
= ∂1α(hβ11〈Jeβ, e3〉+ 〈cosαe2 + sinαe3, ∇̄e1e3〉)

+∂2α(hβ12〈Jeβ, e3〉+ 〈cosαe2 + sinαe3, ∇̄e2e3〉)
= − cosα(h4

11 + h3
12)∂1α− cosα(h4

12 + h3
22)∂2α

= cosα|∇α|2.(5.28)

Here, we have used (5.25). Similarly, from z = 〈Je1, e4〉, we have at p,

∂2α∂1z − ∂1α∂2z

=
(c− 1) cosα+ 3 cos3 α

c+ 1 + cos2 α
|∇α|2 − sinα(〈∇̄e1e3, e4〉∂2α+ 〈∇̄e2e4, e3〉∂1α).(5.29)

Putting (5.28) and (5.29) into (5.27) and using (5.22) yields

sinα(H4
,1 +H3

,2)

=
2 sin2 α

c+ 1 + cos2 α
∆ cosα+

−4(c+ 1) cosα+ 4c cos3 α+ 4 cos5 α

(c+ 1 + cos2 α)2
|∇α|2.(5.30)

Then (5.19) follows from (5.26), (5.30) and Proposition 5.2. Q.E.D.

Applying the maximum principle to (5.20), we have

Corollary 5.4. Suppose that M is a Kähler-Einstein surface with positive scalar curvature.
Then any symplectic Fc-critical surface with c ≥ 1 in M is a holomorphic curve.

By a standard computation as above and in [19], [14], we can obtain the second variation
formula:

Proposition 5.5. Let M be a Kähler-Einstein surface with scalar curvature R. If we choose
X = x3e3 + x4e4 and Y = −JνX = x4e3 − x3e4, then the second variation formula of the
functional Fc on a Fc-critical surface is

IIc(X) + IIc(Y) = −2(c+ 1)

∫
Σ
|X|2K1234dµ+ 2(c+ 1)

∫
Σ
|∇⊥X|2dµ

−1

2

∫
Σ

(c+ 1 + cos2 α)|X|2R sin2 αdµ+

∫
Σ

(2 cos2 α− 1)|∂̄X|2
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−2

∫
Σ
|X|2 (2 cos2 α+ c)(3 cos2 α+ c− 1)

c+ 1 + cos2 α
|∇α|2dµ.(5.31)

Appendix A

In this appendix, we will prove Proposition 5.1. Before we prove the proposition, we first
recall some basic facts on principle symbols.

Let Σ be a smooth manifold and suppose E is a smooth vector bundle over M . To a linear
differential operator P : Γ(E) → Γ(E) of order k, at every point x ∈ M and for every
ξ ∈ T ∗xM one can associated an algebraic object, the principle symbol σξ(P ;x), often
written simply by σξ(P ). If, in local coordinate,

(A.1) Pu =
∑
|α|≤k

aα(x)∂αu,

where aα are dimE × dimE matrices, then σξ(P ;x) is the matrix

(A.2) σξ(P ;x) =
∑
|α|=k

aα(x)ξα.

Here, ξα = ξα1
1 · · · ξαn

n .

Definition A.1. A linear differential operator P : Γ(E)→ Γ(E) is (strictly) elliptic if
there exists λ > 0 such that

(A.3) 〈σξ(P ;x)v, v〉 ≥ λ|ξ|2|v|2,

for all (x, ξ) ∈ T ∗(M) and v ∈ Γ(E).

For a nonlinear differential operator P (x, ∂ku), its linearization at u is the linear operator

(A.4) DP (u)v =
d

dt
P (x, ∂k(u+ tv))|t=0.

The nonlinear equation P (x, ∂ku) = 0 is elliptic at u, if its linearization at u is elliptic in
the sense of Definition A.1.

Now we can prove the following proposition:

Proposition A.1. The equation (5.15) is a weakly elliptic system for c > 1. The kernel of
the principle symbol arises from the tangential directions of Σ.

Proof: For simplicity, we suppose that Σ is a surface in Cn. The general case is similar.
In local coordinate, we can express the surface as

F : Σ −→ Cn = R2n

(x1, x2) 7−→ F (x1, x2) = (F 1(x1, x2), · · · , F 2n(x1, x2)).

We will use the following conventions:

1 ≤ i, j, · · · ≤ 2, 3 ≤ α, β, · · · ≤ 2n, 1 ≤ A,B, · · · ≤ 2n.
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The tangent space of Σ at a fixed point x ∈ Σ is spanned by {e1, e2} given by

(A.5) e1 =
∂F

∂x1
=
∂FA

∂x1
EA, e2 =

∂F

∂x2
=
∂FA

∂x2
EA,

where {E1, · · · , E2n} is the standard orthonormal basis of R2n. Therefore, the induced
metric on Σ is given by

(A.6) gij = 〈ei, ej〉 =
∂FA

∂xi

∂FA

∂xj
.

We can take the coordinate so that at the fixed point x ∈ Σ, we have gij(x) = δij . We will
also take the standard complex structure J on Cn given by

(A.7) J =


0 −1
1 0

. . .

0 −1
1 0

 .

Then we have

(A.8)

{
JE2k−1 = E2k,

JE2k = E2k−1.

Furthermore, we choose any orthonormal basis {nα}2nα=3 of the normal space. Denote

(A.9) P = (c+ 1 + cos2 α)H + 2(J(∇e1 cosαe2 −∇e2 cosαe1))⊥.

We will compute the principle symbol of P .

First we consider the principal part of H. Note that by (A.6), we can easily see that the
Christoffel symbol of the induced metric is:

Γkij =
1

2
gkl
{
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

}
= gkl

∂2FB

∂xi∂xj

∂FB

∂xl
.

Therefore, we have

H = ∆ΣF = gij
(

∂2F

∂xi∂xj
− Γkij

∂F

∂xk

)
= gij

(
∂2F

∂xi∂xj
− gkl ∂

2FB

∂xi∂xj

∂FB

∂xl

∂F

∂xk

)
= gij

(
∂2FA

∂xi∂xj
− gkl ∂F

A

∂xk

∂FB

∂xl

∂2FB

∂xi∂xj

)
EA.(A.10)

The linearization of the operator at F in the direction G is:

(A.11) D(H)(F )G = gij
(
∂2GA

∂xi∂xj
− gkl ∂F

A

∂xk

∂FB

∂xl

∂2GB

∂xi∂xj

)
EA + first order terms.

Next, we will consider the second part of P . By definition,

(A.12) cosα =
ω̄(e1, e2)√
det(gij)

=
〈Je1, e2〉√
det(gij)

.
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By (A.5) and (A.7), we have:

(A.13) 〈Je1, e2〉 =
n∑
k=1

(
∂F 2k−1

∂x1

∂F 2k

∂x2
− ∂F 2k

∂x1

∂F 2k−1

∂x2

)
.

Therefore, we have

cosα =

∑n
k=1

(
∂F 2k−1

∂x1
∂F 2k

∂x2
− ∂F 2k

∂x1
∂F 2k−1

∂x2

)
√
det(gij)

,

∂ cosα

∂x1
=

=
1√

det(gij)

{
n∑
k=1

(
∂2F 2k−1

∂x2
1

∂F 2k

∂x2
+
∂F 2k−1

∂x1

∂2F 2k

∂x1∂x2
− ∂2F 2k

∂x2
1

∂F 2k−1

∂x2
− ∂F 2k

∂x1

∂2F 2k−1

∂x1∂x2

)
−1

2
〈Je1, e2〉gij

(
∂2FA

∂x1∂xi

∂FA

∂xj
+
∂FA

∂xi

∂2FA

∂x1∂xj

)}
,

and

∂ cosα

∂x2
=

=
1√

det(gij)

{
n∑
k=1

(
∂2F 2k−1

∂x1∂x2

∂F 2k

∂x2
+
∂F 2k−1

∂x1

∂2F 2k

∂x2
2

− ∂2F 2k

∂x1∂x2

∂F 2k−1

∂x2
− ∂F 2k

∂x1

∂2F 2k−1

∂x2
2

)
−1

2
〈Je1, e2〉gij

(
∂2FA

∂x2∂xi

∂FA

∂xj
+
∂FA

∂xi

∂2FA

∂x2∂xj

)}
.

By our choice of the frame, at the fixed point x, we have

(J(∇e1 cosαe2 −∇e2 cosαe1))⊥ =
∂ cosα

∂x1
(Je2)⊥ − ∂ cosα

∂x2
(Je1)⊥

=
∂ cosα

∂x1
〈Je2, nα〉nα −

∂ cosα

∂x2
〈Je1, nα〉nα.(A.14)

Notice that cosα, gij , ei and nα only involve first order derivative of the immersion F .
Therefore, by (A.11) and (A.14), we know that the linearization of the operator P at F in
the direction G (computed at the point x) is:

D(P)(F )G = (c+ 1 + cos2 α)gij
(
∂2GA

∂xi∂xj
− gkl ∂F

A

∂xk

∂FB

∂xl

∂2GB

∂xi∂xj

)
EA

+2

{
n∑
k=1

(
∂2G2k−1

∂x2
1

∂F 2k

∂x2
+
∂F 2k−1

∂x1

∂2G2k

∂x1∂x2
− ∂2G2k

∂x2
1

∂F 2k−1

∂x2
− ∂F 2k

∂x1

∂2G2k−1

∂x1∂x2

)
−1

2
〈Je1, e2〉gij

(
∂2GA

∂x1∂xi

∂FA

∂xj
+
∂FA

∂xi

∂2GA

∂x1∂xj

)}
〈Je2, nα〉nα

−2

{
n∑
k=1

(
∂2G2k−1

∂x1∂x2

∂F 2k

∂x2
+
∂F 2k−1

∂x1

∂2G2k

∂x2
2

− ∂2G2k

∂x1∂x2

∂F 2k−1

∂x2
− ∂F 2k

∂x1

∂2G2k−1

∂x2
2

)
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−1

2
〈Je1, e2〉gij

(
∂2GA

∂x2∂xi

∂FA

∂xj
+
∂FA

∂xi

∂2GA

∂x2∂xj

)}
〈Je1, nα〉nα

+ first order terms.(A.15)

We will denote GT and G⊥ the projection of G ∈ R2n on the tangent bundle and normal
bundle of Σ, respectively. It is easy to see that

|GT |2 = gkl〈G, ∂F
∂xk
〉〈G, ∂F

∂xl
〉 = gklGAGB

∂FA

∂xk

∂FB

∂xl
.

Then we see that the principle symbol of P is given by:

〈σ(D(P ))(x, ξ)G,G〉 = (c+ 1 + cos2 α)gij
(
ξiξj |G|2 − gkl

∂FA

∂xk

∂FB

∂xl
ξiξjG

AGB
)

+2

{
n∑
k=1

(
G2k−1∂F

2k

∂x2
−G2k ∂F

2k−1

∂x2

)
〈Je2, G

⊥〉ξ2
1

+
n∑
k=1

(
G2k−1∂F

2k

∂x1
−G2k ∂F

2k−1

∂x1

)
〈Je1, G

⊥〉ξ2
2

−
n∑
k=1

[(
G2k−1∂F

2k

∂x1
−G2k ∂F

2k−1

∂x1

)
〈Je2, G

⊥〉

+

(
G2k−1∂F

2k

∂x2
−G2k ∂F

2k−1

∂x2

)
〈Je1, G

⊥〉
]
ξ1ξ2

+ cosαgijGA
(
∂FA

∂xj
〈Je1, G

⊥〉ξ2ξi −
∂FA

∂xj
〈Je2, G

⊥〉ξ1ξi

)}
.(A.16)

By (A.8), we have

〈σ(D(P ))(x, ξ)G,G〉 = (c+ 1 + cos2 α)|ξ|2|G⊥|2

+2
{(
−〈Je2, G

⊥〉〈Je2, G〉 − 〈Je1, e2〉〈G, e1〉〈Je2, G
⊥〉
)
ξ2

1

+
(
−〈Je1, G

⊥〉〈Je1, G〉+ 〈Je1, e2〉〈G, e2〉〈Je1, G
⊥〉
)
ξ2

2

+
(
〈Je2, G

⊥〉〈Je1, G〉+ 〈Je1, G
⊥〉〈Je2, G〉

+〈Je1, e2〉〈G, e1〉〈Je1, G
⊥〉 − 〈Je1, e2〉〈G, e2〉〈Je2, G

⊥〉
)
ξ1ξ2

}
.(A.17)

Note that (Je1)T = 〈Je1, e2〉e2 and (Je2)T = −〈Je1, e2〉e1. Thus we have

〈σ(D(P ))(x, ξ)G,G〉 = (c+ 1 + cos2 α)|ξ|2|G⊥|2

−2
(
〈G⊥, Je2〉2ξ2

1 − 2〈G⊥, Je1〉〈G⊥, Je2〉ξ1ξ2 + 〈G⊥, Je1〉2ξ2
2

)
=

(
(c+ 1 + cos2 α)|G⊥|2 − 2〈G⊥, Je2〉2

)
ξ2

1

+4〈G⊥, Je1〉〈G⊥, Je2〉ξ1ξ2

+
(

(c+ 1 + cos2 α)|G⊥|2 − 2〈G⊥, Je1〉2
)
ξ2

2 .(A.18)
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The coefficient matrix is given by
(A.19)

O =

(
(c+ 1 + cos2 α)|G⊥|2 − 2〈G⊥, Je2〉2 2〈G⊥, Je1〉〈G⊥, Je2〉

2〈G⊥, Je1〉〈G⊥, Je2〉 (c+ 1 + cos2 α)|G⊥|2 − 2〈G⊥, Je1〉2
)
.

We have

detA = (c+ 1 + cos2 α)|G⊥|2
(

(c+ 1 + cos2 α)|G⊥|2 − 2(〈G⊥, Je1〉2 + 〈G⊥, Je2〉2)
)

≥ (c− 1 + cos2 α)(c+ 1 + cos2 α)|G⊥|4.(A.20)

From (A.19) and (A.20), we see that if c > 1, then for any (ξ1, ξ2) 6= (0, 0) and G ∈ R2n,
we have

〈σ(D(P ))(x, ξ)G,G〉 ≥ 0,

and the inequality is strict unless G⊥ = 0, i.e., G is tangential to Σ. This finishes the proof
of the Proposition. Q.E.D.
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