We consider a generalization of the Hopfield model, where the entries of patterns are Gaussian and diluted. We focus on the high-storage regime and we investigate analytically the topological properties of the emergent network, as well as the thermodynamic properties of the model. We find that, by properly tuning the dilution in the pattern entries, the network can recover different topological regimes characterized by peculiar scalings of the average coordination number with respect to the system size. The structure is also shown to exhibit a large degree of cliquishness, even when very sparse. Moreover, we obtain explicitly the replica-symmetric free energy and the self-consistency equations for the overlaps (order parameters of the theory), which turn out to be classical weighted sums of 'sub-overlaps' defined on all possible sub-graphs. Finally, a study of criticality is performed through a small-overlap expansion of the self-consistencies and through a whole fluctuation theory developed for their rescaled correlations: both approaches show that the net effect of dilution in pattern entries is to rescale the critical noise level at which ergodicity breaks down.

Analogue neural networks on correlated random graphs / Agliari, Elena; L., Asti; A., Barra; Burioni, Raffaella; Uguzzoni, Guido. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8121. - 45:(2012), p. 365001. [10.1088/1751-8113/45/36/365001]

Analogue neural networks on correlated random graphs

AGLIARI, Elena;BURIONI, Raffaella;UGUZZONI, Guido
2012-01-01

Abstract

We consider a generalization of the Hopfield model, where the entries of patterns are Gaussian and diluted. We focus on the high-storage regime and we investigate analytically the topological properties of the emergent network, as well as the thermodynamic properties of the model. We find that, by properly tuning the dilution in the pattern entries, the network can recover different topological regimes characterized by peculiar scalings of the average coordination number with respect to the system size. The structure is also shown to exhibit a large degree of cliquishness, even when very sparse. Moreover, we obtain explicitly the replica-symmetric free energy and the self-consistency equations for the overlaps (order parameters of the theory), which turn out to be classical weighted sums of 'sub-overlaps' defined on all possible sub-graphs. Finally, a study of criticality is performed through a small-overlap expansion of the self-consistencies and through a whole fluctuation theory developed for their rescaled correlations: both approaches show that the net effect of dilution in pattern entries is to rescale the critical noise level at which ergodicity breaks down.
2012
Analogue neural networks on correlated random graphs / Agliari, Elena; L., Asti; A., Barra; Burioni, Raffaella; Uguzzoni, Guido. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8121. - 45:(2012), p. 365001. [10.1088/1751-8113/45/36/365001]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2456839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact