Plants and fungi respond to environmental light stimuli via the action of different photoreceptor modules. One such class, responding to the blue region of light, is constituted by photoreceptors containing so-called light-oxygen-voltage (LOV) domains as sensor modules. Four major LOV families are currently identified in eukaryotes: (i) the plant phototropins, regulating various physiological effects such as phototropism, chloroplast relocation, and stomatal opening; (ii) the aureochromes, mediating photomorphogenesis in photosynthetic stramenopile algae; (iii) the plant circadian photoreceptors of the zeitlupe (ZTL)/adagio (ADO)/flavinbinding Kelch repeat F-box protein 1 (FKF1) family; and (iv) the fungal circadian photoreceptors white-collar 1 (WC-1). Blue-light-sensitive LOV signaling modules are also widespread throughout the prokaryotic world, and physiological responses mediated by bacterial LOV photoreceptors were recently reported. Thus, the question arises as to the evolutionary relationship between the pro- and eukaryotic LOV photoreceptor systems. We used Bayesian and maximum-likelihood tree reconstruction methods to infer evolutionary scenarios that might have led to the widespread appearance of LOV domains among the pro- and eukaryotes. The phylogenetic study presented here suggests a bacterial origin for the LOV domains of the four major eukaryotic LOV photoreceptor families, whereas the LOV sensor domains were most likely recruited from the bacteria in the course of plastid and mitochondrial endosymbiosis.
Distribution and phylogeny of light, oxygen, voltage (LOV) blue-light signaling proteins in the three kingdoms of life / Krauss, U; Minh, B. Q.; Losi, Aba; Gaertner, W; Eggert, T; VON HAESELER, A. JAEGER K. J.. - In: JOURNAL OF BACTERIOLOGY. - ISSN 0021-9193. - 191:(2009), pp. 7234-7242. [10.1128/JB.00923-09]
Distribution and phylogeny of light, oxygen, voltage (LOV) blue-light signaling proteins in the three kingdoms of life
LOSI, Aba;
2009-01-01
Abstract
Plants and fungi respond to environmental light stimuli via the action of different photoreceptor modules. One such class, responding to the blue region of light, is constituted by photoreceptors containing so-called light-oxygen-voltage (LOV) domains as sensor modules. Four major LOV families are currently identified in eukaryotes: (i) the plant phototropins, regulating various physiological effects such as phototropism, chloroplast relocation, and stomatal opening; (ii) the aureochromes, mediating photomorphogenesis in photosynthetic stramenopile algae; (iii) the plant circadian photoreceptors of the zeitlupe (ZTL)/adagio (ADO)/flavinbinding Kelch repeat F-box protein 1 (FKF1) family; and (iv) the fungal circadian photoreceptors white-collar 1 (WC-1). Blue-light-sensitive LOV signaling modules are also widespread throughout the prokaryotic world, and physiological responses mediated by bacterial LOV photoreceptors were recently reported. Thus, the question arises as to the evolutionary relationship between the pro- and eukaryotic LOV photoreceptor systems. We used Bayesian and maximum-likelihood tree reconstruction methods to infer evolutionary scenarios that might have led to the widespread appearance of LOV domains among the pro- and eukaryotes. The phylogenetic study presented here suggests a bacterial origin for the LOV domains of the four major eukaryotic LOV photoreceptor families, whereas the LOV sensor domains were most likely recruited from the bacteria in the course of plastid and mitochondrial endosymbiosis.File | Dimensione | Formato | |
---|---|---|---|
Losi_Anvur5Abstract.doc
non disponibili
Tipologia:
Abstract
Licenza:
Creative commons
Dimensione
21 kB
Formato
Microsoft Word
|
21 kB | Microsoft Word | Visualizza/Apri Richiedi una copia |
Losi_anvur_5.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
844.62 kB
Formato
Adobe PDF
|
844.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.