Decreased bone formation contributes to the development of bone lesions in multiple myeloma (MM) patients. In this study, we have investigated the effects of myeloma cells on osteoblast formation and differentiation and the potential role of the critical osteoblast transcription factor RUNX2/CBFA1 (Runt-related transcription factor 2/core-binding factor Runt domain subunit 1) in the inhibition of osteoblastogenesis in MM. We found that human myeloma cells suppress the formation of human osteoblast progenitors in bone marrow (BM) cultures. Moreover, an inhibitory effect on osteocalcin, alkaline phosphatase, collagen I mRNA, protein expression, and RUNX2/CBFA1 activity by human preosteoblastic cells was observed in cocultures with myeloma cells. The inhibitory effect was more pronounced in the cell-to-cell contact conditions compared with those without the contact and involved the very late antigen 4 (VLA-4) integrin system. Among the soluble osteoblast inhibitors screened, we show the potential contribution of interleukin-7 (IL-7) in the inhibitory effect on osteoblast formation and RUNX2/ CBFA1 activity by human myeloma cells in coculture. Finally, our in vitro results were supported in vivo by the finding of a significant reduction in the number of Runx2/Cbfa1-positive cells in theBMbiopsies of patients with MM who had osteolytic lesions compared with those who did not have bone lesions, suggesting the critical involvement of RUNX2/CBFA1 in the decreased bone formation in MM.

Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation / Giuliani, Nicola; Colla, S.; Morandi, F.; Lazzaretti, Mirca; Sala, Roberto; Bonomini, S.; Grano, M.; Colucci, S.; Svaldi, M; Rizzoli, Vittorio. - In: BLOOD. - ISSN 0006-4971. - 106:(2005), pp. 2472-2483. [10.1182/blood-2004-12-4986]

Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation

GIULIANI, Nicola;LAZZARETTI, Mirca;SALA, Roberto;RIZZOLI, Vittorio
2005-01-01

Abstract

Decreased bone formation contributes to the development of bone lesions in multiple myeloma (MM) patients. In this study, we have investigated the effects of myeloma cells on osteoblast formation and differentiation and the potential role of the critical osteoblast transcription factor RUNX2/CBFA1 (Runt-related transcription factor 2/core-binding factor Runt domain subunit 1) in the inhibition of osteoblastogenesis in MM. We found that human myeloma cells suppress the formation of human osteoblast progenitors in bone marrow (BM) cultures. Moreover, an inhibitory effect on osteocalcin, alkaline phosphatase, collagen I mRNA, protein expression, and RUNX2/CBFA1 activity by human preosteoblastic cells was observed in cocultures with myeloma cells. The inhibitory effect was more pronounced in the cell-to-cell contact conditions compared with those without the contact and involved the very late antigen 4 (VLA-4) integrin system. Among the soluble osteoblast inhibitors screened, we show the potential contribution of interleukin-7 (IL-7) in the inhibitory effect on osteoblast formation and RUNX2/ CBFA1 activity by human myeloma cells in coculture. Finally, our in vitro results were supported in vivo by the finding of a significant reduction in the number of Runx2/Cbfa1-positive cells in theBMbiopsies of patients with MM who had osteolytic lesions compared with those who did not have bone lesions, suggesting the critical involvement of RUNX2/CBFA1 in the decreased bone formation in MM.
2005
Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation / Giuliani, Nicola; Colla, S.; Morandi, F.; Lazzaretti, Mirca; Sala, Roberto; Bonomini, S.; Grano, M.; Colucci, S.; Svaldi, M; Rizzoli, Vittorio. - In: BLOOD. - ISSN 0006-4971. - 106:(2005), pp. 2472-2483. [10.1182/blood-2004-12-4986]
File in questo prodotto:
File Dimensione Formato  
giuliani paper 1.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 999.73 kB
Formato Adobe PDF
999.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1446709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 283
  • ???jsp.display-item.citation.isi??? 250
social impact