Macroeconomic and financial time series are often tested for the presence of non linearity effects. Sometimes, small patches of extremal observations may wrongly influence non linearity tests. In this paper a robust analysis of the Lagrange Multiplier (LM) test for GARCH components is suggested. With Monte Carlo simulation we show that extreme observations might cause over-estimation of the number of GARCH components, with the main contribution consisting by introducing the forward search method into the GARCH model family. Using robust estimators of regression coefficients and graphical displays of results, the effect of influential observations on estimates can be efficiently monitored. Analyzing macroeconomic and financial time series we show that identifying the order of a GARCH model can be unduly influenced by a few isolated large values, and extremal observations affect p−values and t−statistics in an unexpected manner.

Analysis of economic time series: effects of extremal observations on testing heteroscedastic components / Grossi, Luigi; Laurini, Fabrizio. - In: APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY. - ISSN 1524-1904. - 20:(2004), pp. 115-130.

Analysis of economic time series: effects of extremal observations on testing heteroscedastic components

GROSSI, Luigi;LAURINI, Fabrizio
2004-01-01

Abstract

Macroeconomic and financial time series are often tested for the presence of non linearity effects. Sometimes, small patches of extremal observations may wrongly influence non linearity tests. In this paper a robust analysis of the Lagrange Multiplier (LM) test for GARCH components is suggested. With Monte Carlo simulation we show that extreme observations might cause over-estimation of the number of GARCH components, with the main contribution consisting by introducing the forward search method into the GARCH model family. Using robust estimators of regression coefficients and graphical displays of results, the effect of influential observations on estimates can be efficiently monitored. Analyzing macroeconomic and financial time series we show that identifying the order of a GARCH model can be unduly influenced by a few isolated large values, and extremal observations affect p−values and t−statistics in an unexpected manner.
2004
Analysis of economic time series: effects of extremal observations on testing heteroscedastic components / Grossi, Luigi; Laurini, Fabrizio. - In: APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY. - ISSN 1524-1904. - 20:(2004), pp. 115-130.
File in questo prodotto:
File Dimensione Formato  
gro_lau_asmb.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 289.88 kB
Formato Adobe PDF
289.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1441680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact