Let M be an oriented compact 3-manifold and let T be a (loose) triangulation of M with ideal vertices at the components of ∂M and possibly internal vertices. We show that any spin structure s on M can be encoded by extra combinatorial structures on T. We then analyze how to change these extra structures on T, and T itself, without changing s, thereby getting a combinatorial realization, in the usual "objects/moves" sense, of the set of all pairs (M, s). Our moves have a local nature, except one, that has a global flavour but is explicitly described anyway. We also provide an alternative approach where the global move is replaced by simultaneous local ones.
Spin structures on 3-manifolds via arbitrary triangulations / Benedetti, R.; Petronio, C.. - In: ALGEBRAIC AND GEOMETRIC TOPOLOGY. - ISSN 1472-2747. - 14:2(2014), pp. 1005-1054. [10.2140/agt.2014.14.1005]
Spin structures on 3-manifolds via arbitrary triangulations
Petronio C.
2014-01-01
Abstract
Let M be an oriented compact 3-manifold and let T be a (loose) triangulation of M with ideal vertices at the components of ∂M and possibly internal vertices. We show that any spin structure s on M can be encoded by extra combinatorial structures on T. We then analyze how to change these extra structures on T, and T itself, without changing s, thereby getting a combinatorial realization, in the usual "objects/moves" sense, of the set of all pairs (M, s). Our moves have a local nature, except one, that has a global flavour but is explicitly described anyway. We also provide an alternative approach where the global move is replaced by simultaneous local ones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


